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概要

細胞の集団運動では他の細胞を認識して運動することでその運動を秩序化する. その中に細胞が
他の細胞と接触した際に応答して運動する様式があり, 接触誘発と本稿では呼ぶ. この様式では
別の様式である相互誘導において起きる運動秩序化を抑制する短距離秩序が現れる. 本研究では
この短距離秩序の理解ため, 比較的小さいシステムサイズでの有限サイズ効果を利用することを
試みた. 特にそのような有限サイズ効果は運動維持性の影響を受けるためその維持性への依存性
を調べた. その結果, 運動の秩序が空間的に生まれるものの時間的に大きく揺らぎ続ける状態が
現れることが判った.
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Abstract

Cells utilize their response behavior to mutual contacts to order their motion in their collective
movement. Typical response behavior is that the simple mechanical cell contact triggers the
motion of the cell. We call this behavior contact triggering. This behavior makes the state have
an ordered motion in a short range, which results in the relative instability of the collective
movement in comparison with other known behaviors. We investigate this state in a model
cell system by using a finite size effect at a small system size. In particular, since the effect is
empirically known to depend strongly on the response time of cell polarity in other response
behaviors, we examine this dependence in this system. The simulation of this system shows
the emergence of motion ordering and large directional fluctuation of the motion.

1 Introduction
Collective movement of cells contributes to or-

gan formation in various biological systems. In the
movement, cells mechanically contact each other
and show motion ordering. The intercellular in-
teraction for the ordering uses molecular bind-
ing bridges between membranes. The binding
molecules consist of two types, receptors and lig-
ands [1]. The reception of ligands by receptors
drives the motion of the cell that has the recep-
tors. The direction of motion reflects the spatial
distribution of these molecules localizing on the cell
membrane of edges. Namely, the distributions are
a determinant factor for directional changes in cel-
lular motion. This distribution determines the spa-

tial inversion symmetry of the cellular interaction
by forming the so-called “cell polarity”. The sym-
metry is expected to contribute to the stability of
the ordered motion on the basis of the insights into
the active matter physics [2]. Therefore, the molec-
ular distribution is naturally expected to determine
the motion ordering.
In the typical spatial distribution, receptors con-

centrate on one side of the cells and determine the
direction of cell motion [3–5]. The distribution due
to this one-side concentration is a typical cell po-
larity for moving cells, and we call this polar distri-
bution. Another type of binding molecule, ligands,
can have a variety of their distribution. For exam-
ple, in the case of homophilic adhesion, a ligand



is identical to the receptor and, trivially, has the
same polar distribution in the same cell [6]. An-
other possible ligand distribution is uniform when
the ligand differs from the receptor. We call the
mechanism of motion ordering due to polar dis-
tribution “mutual guiding”. We call that due to
uniform distribution “contact triggering”. In the
former mechanism, the cell can inform surround-
ing cells of its direction through the direction of
the polar distribution of the ligand [7]. In contrast,
in the latter case, the cell cannot inform surround-
ing cells of their direction of motion because of no
particular direction in the ligand distribution [8].
The dependence of motion ordering in these two
mechanisms is not well clarified.
Our previous work focusing on this dependence

showed a relative instability of motion order for the
contact triggering [9]. The work calculated the or-
der parameter of the direction of the receptor po-
lar distribution with increasing the driving force.
It showed that the increase of the order parameter
with the driving force is relatively weak in the con-
tact triggering in contrast to the mutual guiding.
This realativly-weak increase in the case of contact
triggering implies that the information through the
polar distribution of ligands is not necessary but
effective for motion ordering. As the explanation
of the relatively weak increase, we speculated that
the domain of ordered motion in this state remains
only in a particularly short range. The examina-
tion of this speculation is a crucial issue for us to
understand the instability of the ordered motion
due to contact triggering.
In the present paper, we investigate the state

with ordered motions due to the contact-triggering
in order to understand the instability of collective
movement. The effects of ordered motions in a
short range are invisible based on the order pa-
rameter in the simulation of a large system size
because the contribution of the domains of the or-
dered motion to the order parameter is expected
to cancel each other. To avoid this invisibility, we
consider a small-size system where the domains of
ordered motion do not cancel in the contribution to
the order parameter. The stability of short-range
order in small system sizes is empirically expected
to depend on the response time scale of receptor
cell polarity τ [10]. Therefore, we calculate the de-
pendence of the order parameter on τ by using the
cellular Potts model [11]. We find that the state
has a large directional fluctuation of ordered mo-
tion over the small system size. This existence of
the highly fluctuating direction may be the origin of
the relatively weakened cell movement in contact-
triggering.

2 Model
Our model is a variant of the cellular Potts model

[11]. The model is formulated on a two-dimensional
square lattice with a linear size L. The lattice axes
of the square lattice are set in the x and y direc-
tions. We set the system size L at 96, which is

smaller than that in previous work (L ≥ 192) [9].
As shown later, this small size enables the model
cells to stabilize an ordered motion over the sys-
tem, which is not easily observed in the previous
work.
The states in this model consist of the set of

Potts states m(r) at the square lattice points and
the set of a pair of a unit vector pn and a center
position of cells Rn for each nth Potts state. The
former set expresses the cell configuration, and the
latter pair expresses the directions of polar distri-
bution for receptors of nth cells. The state m(r) at
r represents the cell index occupying r and takes
a number from 0 to the number of cells N = 144.
Thus, the domain of m(r) = n expresses the shape
of nth cell. Exceptionally, m(r) = 0 represents the
empty space at r.
The dynamics of the Potts state is defined as

a stochastic copy process with given Hamiltonian
H(s), where s is a state consisting of {m(r)},
{(pn,Rn)}. For each copy process, a copy to a
randomly chosen site r from its randomly chosen
neighboring site r′ is accepted by the Metropolis
probability min [P (sa)/P (sb), 1]. Here, the neigh-
boring sites consist of the nearest and next nearest
sites. sa and sb are the states after copy and before
copy, respectively. P (s) is the realization probabil-
ity given by the Boltzmann weight exp[−βH(s)],
with a strength of cell shape fluctuation β = 0.5.
16L2 copies constitute 1 Monte Carlo step, which
is the unit of time. The Monte Carlo steps generate
consecutive state series. For each interval between
two Monte Carlo step, pn is updated by [5, 12, 13]

ṗn =
1

aτ
P̂⊥pn

Ṙn. (1)

Here, P̂⊥pn
is a projecton operator in the perpen-

dicular direction to pn. The a is lattice constant
and set to unity. τ is the response time scale ratio
of ṗn to Ṙm. The dependence of the state on τ
is examined for motion ordering. The equation is
solved by the Euler method with a time difference
of 1 Monte Carlo step. Rn is also updated to the
center of mass of the nth cell.
The Hamiltonian H is the sum of adhesion part

Ha, the area stiffness part Hs, and the driving part
Hd,

Ha =
∑
rr′

ηm(r)m(r′)γ(m(r)m(r′)), (2)

Hs = κA
∑
m

(1−
∑

r δm(r)m

A
)2 (3)

Hd = −δ
∑
rr′

ηm(r)m(r′)(pm(r) · em). (4)

Here, ηkl = 1 − δkl is the indicator of Potts
state domain boundaries and δkl is the Kronecker
delta. The surface tension γ(kl) takes 4.0 when
the boundary is cell-cell one, namely, k ̸= 0 and
l ̸= 0. Otherwise, it takes unity. κ and A are the
area modulus and the reference area of a cell. δ



is the driving force due to contact triggering and
is set to 0.2. In the case of δ = 0.2, cell motions
were observed in the previous work [9]. en(r) is
(r −Rn)/|r −Rn|.
We obtain a relaxation state from an array of

cells with random {pn} through the 105 Monte
Carlo steps. Then, we calculate the order parame-
ter [14]

P (t) =
1

N

∑
n

pn(t). (5)

Here, we observe this value during T = 105 Monte
Carlo steps. By P , we examine the existence of the
ordered state.

3 Result
To examine a typical behavior of P , we plot the

components of P , namely Px and Py in Fig. 1. In
this data, the response time of {pn}, τ , is set to 4.0.
The components of P highly fluctuate in the sim-
ulation. This type of fluctuation is not observed in
the case of the mutual guiding mechanism when an
ordered motion exists [9]. In addition, the compo-
nents frequently take values near unity. Therefore,
the cell motions form an ordered state, at least for
a short time. In contrast to the mutual guiding,
intrinsic fluctuation emerges even in the ordered
motion in the contact triggering.
This state with the fluctuation is similar to a

transition state from solid to fluid states with in-
creasing driving force in the case of self-propelled
cells [10]. Therefore, one possible origin of this
state is a transition from solid to fluid. We plot it
in the same figure to confirm the absence of fluctua-
tion in the absolute value |P | due to the transition.
As expected, the value of |P | is almost a constant
value near unity, and therefore, the motion direc-
tion nearly exhibits a spatially ordered state over
cells. The spatial order of motion direction in this
state is a similar property of the transition state
of self-propelled cells. This similar property may
imply that the origin of the fluctuation is the tran-
sition from solid to fluid.
In examining the transition state, we also recall

that the destabilization effect of the direction of P
originates from the short response time [15]. The
effect of short response time may be another possi-
ble origin of this fluctuating short-range state. To
check the possibility of the effect of short response
time τ , we calculate the time average value of the
order parameter

P (τ) =

∣∣∣∣ 1T
∫
T

dtP (t)

∣∣∣∣ (6)

as a function of τ . We plot P (τ) in Fig. 2. P (τ)
in response times shorter than 2 are much lower
values and indicate the fluctuating state similar to
the state previously observed in the case of self-
propelled states [10, 15]. In contrast, the order
parameter remains finite for the larger value of τ .
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Fig. 1: Components of order parameters Px(t),
Py(t) and absolute value of the order parameter
|P (t)| as a function of Monte Carlo steps t. The
origin of time is the end step of the relaxation
simulation.

These finite values of the order parameter indicate
the emergence of states distinct from that under
the effect of a short response time. This state is
expected to correspond to the fluctuating state for
τ = 4.0 in Fig. 1. The fluctuated characteristics
seem to be observed as the non-systematic depen-
dence of P (τ) on τ . These results indicate that the
fluctuating state does not originate from the short
response time at least but from the emergence of
the ordered motion in a short range with intrinsic
fluctuation.
We also plot the collective velocity v(τ) as a func-

tion of τ

v(τ) =

∣∣∣∣∣ 1

TN

∫
T

dt
∑
n

dn(t)

∣∣∣∣∣ , (7)

to confirm the contribution of the short-range order
state to the collective movement. Here, dn(t) is the
displacement per Monte Carlo step for the nth cell.
In Fig. 2, the dependence of v(τ) on τ is consistent
with that of P (τ) and, hence, the non-systematic
behavior is also observed in v(τ). Therefore, the
short-range order reflected in P (τ) mainly deter-
mines the collective velocity in this collective move-
ment.

4 Discussions and Remarks
The present work investigates ordered cell mo-

tions in short range with contact-triggering. We
find a large directional fluctuation of ordered mo-
tion in a small system size, which is not observed
for a large system size in previous work [9]. The
domains of the motion order with directional fluc-
tuation in the large system size are expected to
have different directions of motion and, thereby,
cancel each other in the contribution to the order
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Fig. 2: P (τ) as a function of the time ratio τ
proportional to the response time.

parameter. The observation of the directional fluc-
tuation implies that the emergence of the direction
fluctuation is the origin of the relative instability
of the collective movement for contact triggering
in contrast with mutual guiding. The fluctuation
is expected to result from the transition state from
solid to fluid.
The comparison of this state with states in other

systems may provide additional insights into this
state. The fluctuation in this state is not ob-
served so far in the states of mutually guiding
cells[7, 16, 17]. Moreover, the comparison with
the mutual guiding indicates that the information
transfer of the motion direction through the po-
larized ligand distribution contributes to the sta-
bility of the collective movement. In fact, the mu-
tual guiding in the small system size does not show
the non-systematic dependence of P (τ) (not shown
here).
The physical mechanism originating the differ-

ence in the stability between contact-triggering and
mutual guiding is not fully understood yet. The
hint for us to approach the difference may be the
previous observation of cell array formation in the
case of the mutual guiding [13]. The array forma-
tion is expected to correlate highly with the align-
ment of the cellular motion direction. Furthermore,
the array formation is not expected for contact-
triggering. From these hints, we hypothesize that
the stability difference between these mechanisms
may originate from the difference between cell con-
figurations. Namely the cell array formation in-
hibits the fluctuating transition state in the case of
the mutual guiding.
Now, the large system-size simulations do not

provide evidence for the array formation of mutual
guiding. The observation difficulty of this array
originates from the visible condition that the ar-
rays are only observable for marginal cell densities

between individual and collective movements [13].
Instead of directly observing these arrays, we spec-
ulate that the array formation is observable in a
finite-size effect of a small-size system, the size of
which is comparable with the array size. If this
speculation is true, a small-size simulation may be
effective in the observation of these arrays. We
should examine in the future to solve this mecha-
nism of stability difference.
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