PRINT ISSN 2434-5474 ONLINE ISSN 2434-5946

第27回

交通流と自己駆動粒子系

シンポジウム

論文集

Proceedings of the 27 th Symposium on Traffic Flow and Self-driven Particles

本シンポジウムの開催には、 室蘭工業大学大学院 工学研究科・しくみ解明系領域 名古屋大学情報学部大学院情報学研究科 から支援を受けています。

- 日時 : 2021 年 12 月 9 日(木) 13 : 00 17 : 30 10 日(金) 10 : 00 - 16 : 30
 - $10 \square (\pm) 10 . 00 10 . 0$
- 場所 : オンライン開催 (Zoom Meeting)
- 主催 : 交通流数理研究会 http://traffic.phys.cs.is.nagoya-u.ac.jp/~mstf/

第27回 交通流と自己駆動粒子系のシンポジウム・プログラム

主催:交通流数理研究会

Zoom会議

<u>2021年12月9日(木)</u>

- 13:00 13:05
- あいさつ
- 13:05 13:55 特別講演 9-s1

相互予期によって促進される歩行者流の自己組織化

村上 久

(京都工芸繊維大学)

13:55 - 14:15 コーヒーブレイク

14:15 - 14:45 一般 9-1

交通流モデルとしての双安定性をもつ非線形差分方程式

岡本和也¹, 友枝明保²

(¹ 武蔵野大学大学院工学研究科数理工学専攻,² 関西大学総合情報学部)

14:45 - 15:15 一般 9-2

- 高膨潤性ゲル粒子からなる粉体ベッド中への液体注入時のパターン遷移
 - 乙黒康次郎¹, 吉井究², 住野豊^{1,3}
- (¹ 東京理科大学理学研究科応用物理学専攻,² 大阪大学基礎工学研究科機能創成専攻, ³ 東京理科大学総合研究院ウォーターフロンティア研究センター/コロイド界面部門

15:15 - 15:45 一般 9-3

濡れた粉体の履歴に依存したレオロジー特性

吉井究,大槻道夫

(大阪大学基礎工学研究科機能創成専攻)

15:45 - 16:00 コーヒーブレイク

16:00 - 16:30 一般 9-4

- Short-cut を動的に繋ぎ変える small-world における最終感染者サイズへの影響とその評価 猪毛尾賢亮¹, 内海 忍², 立川 雄一², 谷本 潤^{1,2,3}
 - (1 九州大学工学部エネルギー科学科,2 九州大学大学院総合理工学府総合理工学専攻,
 - ³ 九州大学院総合理工学研究院環境理工学部門)
- 16:30 17:00 一般 9-5
- 症候性感染者の隔離・無症候性感染者の存在・発症から隔離までの時間遅れが
- 感染症伝搬ダイナミクスに与える影響
 - 内海 忍¹, 谷本 潤²
- (¹九州大学大学院総合理工学府総合理工学専攻,²九州大学院総合理工学研究院環境理 工学部門)
- 17:00 17:30 特別講演 9-s2

Active flow pedestrian crowds: from large-scale measurements to variational modeling

- Alessandro Corbetta
- (Eindhoven University of Technology, The Netherlands)

2019年12月10日(金)

10:00 - 10:30 一般 10-1

細胞の相互誘導での運動持続性への界面効果

松下勝義,鎌本直也,須藤麻希,藤本仰一 (大阪大学大学院理学研究科生物科学専攻)

- 10:30 11:00 一般 10-2
- 体内のウイルス進化を組み込んだ個体群感染症モデルの解析

立川雄一¹, 谷本 潤^{1,2}

- (¹ 九州大学大学院総合理工学府環境エネルギー工学専攻,² 九州大学総合理工学研究院 環境理工学部門)
- 11:00 11:30 一般 10-3

粒子数が冪分布に従う多分散粉体ガスのレオロジー

山路大樹,石川遥登,高田智史

(東京農工大学機械システム工学専攻)

11:30 - 13:00 ランチブレイク

13:00 - 13:30 一般 10-4

阪神高速ETCデータの時間的規則性

棋本大悟^{1,2},上東貴志¹

(1神戸大学計算社会科学研究センター,2理化学研究所計算化学研究センター)

13:30 - 14:00 一般 10-5

電車の形状が乗客の降車時間に与える影響

嘉幡聰至,川口寿裕

(関西大学社会安全学部安全マネジメント学科)

14:00 - 14:30 一般 10-6

PQ 方式によって稼働するエレベーター3基の運用効率改善シミュレーション

川口隼平¹, 金井政宏², 田中基大³

(¹ 久留米工業大学大学院電子情報システム工学専攻,² 久留米工業大学大学院自動車シ ステム工学専攻,³ 久留米工業大学工学部教育創造工学科) 14:30 - 14:45 コーヒーブレイク

14:45 - 15:15 一般 10-7

最適速度旋回アルゴリズムによるスキッドステアリング 2D ロボットのひも状走行 山田将司¹, 李方正¹, 本田泰²

(¹ 室蘭工業大学大学院工学研究科 情報電子工学系専攻,² 室蘭工業大学大学院しくみ 解明系領域)

15:15 - 15:45 一般 10-8

あおり運転を考慮したミクロ交通流モデルの シミュレーション

末吉郁¹, MD. Anowar Hossain¹, 谷本 潤^{1,2}

(¹ 九州大学大学院総合理工学府環境エネルギー工学専攻,² 九州大学大学院総合理工学 研究院環境理工学部門)

15:45 - 16:15 一般 10-9

ソーシャルフォースモデルを用いた避難シミュレーションにおける事前出口把握及び誘導 の効果

杉山裕¹, 宮川大樹¹, ーノ瀬元喜²

(¹ 静岡大学 大学院総合科学技術研究科工学専攻数理システム工学コース, ² 静岡大学 学術院工学領域数理システム工学系列)

16:15 - 16:20

あいさつ

相互予期によって促進される歩行者流の自己組織化1 村上 久
交通流モデルとしての双安定性をもつ非線形差分方程式
高膨潤性ゲル粒子からなる粉体ベッド中への液体注入時のパターン遷移7 乙黒康次郎, 吉井究, 住野豊
濡れた粉体の履歴に依存したレオロジー特性11 吉井究, 大槻道夫
Short-cut を動的に繋ぎ変える small-world における最終感染者サイズへの 影響とその評価
症候性感染者の隔離・無症候性感染者の存在・発症から隔離までの時間遅れが 感染症伝搬ダイナミクスに与える影響19 内海 忍,谷本 潤
細胞の相互誘導での運動持続性への界面効果
体内のウイルス進化を組み込んだ個体群感染症モデルの解析27 立川雄一, 谷本 潤
粒子数が冪分布に従う多分散粉体ガスのレオロジー31 山路大樹,石川遥登,高田智史
阪神高速 ETC データの時間的規則性35 煤本大悟,上東貴志 1

- PQ 方式によって稼働するエレベーター3基の......43 運用効率改善シミュレーション

川口隼平, 金井政宏, 田中基大

- あおり運転を考慮したミクロ交通流モデルの シミュレーション......51 末吉郁, MD. Anowar Hossain, 谷本 潤

タイトル:相互予期によって促進される歩行者流の自己組織化

発表者:村上久(京工繊大)

概要 : 他の動物の群れ同様、歩行者流などに見られる人の群れは、さまざまな集団的秩序を自己 組織化する。そこでは外的な制御がなくとも、集団としての振る舞いが個体間相互作用を通して 創発する。これを記述するための古典的かつ現在も主流なモデルでは、物理的粒子群に着想を得 た斥力ポテンシャルによる相互作用に基づく。しかし近年の画像解析技術の進歩から現実の歩 行者流を実測・実験的に分析可能となり、従来モデルでは説明が困難な現象が複数見つかってい る。特に、現実の歩行者は従来の距離に依存した斥力ではなく、本質的に予期に基づくことがわ かりつつある。つまり歩行者は、近くにいる他個体の現在の位置だけでなく、その予期される未 来の位置に影響を受けて衝突回避を行うことが、現実の社会空間に近い様々な条件で見られる ことがわかっている。このことは、歩行者は他個体に対して単に受動的に衝突回避行動を取るの ではなく、能動的に経路を探索することを示唆する。しかしながら、こうした予期行動は歩行者 集団現象を普遍的に説明する基盤的相互作用と期待されるものの、予期を行なっている、という こと以上の相互作用様態は多くが不明であった。これに対し演者らは、歩行者一人一人が具体的 にどのような予期行動を行うか、またその集団形成における機能的意義とは何かを問う研究を 進めつつある。本講演ではそのうちの二つの研究を紹介する。一つ目の研究は、予期を通して歩 行者が集団の中で如何に経路探索を行っているかに関するものであり、いわば「人混みを縫って 歩く」とはどういうことかを示そうとするものである。これは、歩行者集団の自己組織化の典型 例として挙げられるレーン形成に関する実験の分析に基づく。レーン形成とは、横断歩道などで、 二つの歩行者集団が対面して移動するとき、同じ方向を歩く歩行者のレーンが自発的に複数形 成されるという現象である。結果として、レーンが形成される過程で、歩行者は目的地への最短 経路から絶えず逸脱し、レヴィ歩行と呼ばれる運動戦略を取ることが示された。レヴィ歩行とは、 多数の短いステップと稀な長距離ステップから構成され、ステップ長の分布がベキ則に従う、ス ケール不変な運動戦略である。通常レヴィ歩行は、動物の探索行動に見られる運動戦略であり、 予測が困難な仕方で分布したリソースの探索効率を最適化することが知られる。従ってこの結 果は予期に基づく経路探索がレーン形成に寄与すること示唆する。そこで二つ目の研究では、予 期がレーン形成と如何に関わるかを明らかにする実験研究を紹介する。こちらでは、歩行者の視 覚的注意を逸らすことであえて予期の認知能力を妨害すると、レーン形成が遅延することが示 された。さらに注意を逸らされた個体のみならず、彼らに向かっていく者や同じ方向に進む者で さえ、歩行中の衝突回避が困難になることが示された。これらの結果は、通常衝突回避戦略は協 調的なプロセスであり、歩行者同士が相互に動きを予期し合うことが集団の自己組織化を促進 していることを意味する。このような相互予期は、歩行者行動のみならず、人の他の集団的意思 決定や、他の動物の群れの自己組織化においても重要であると考えられている。本研究で示され る相互予期の重要性は、集団的な人間行動、生物集団現象、群ロボットなど他の様々な自己組織 化システムの基盤となる知見を与えるものと考えられる。

交通流モデルとしての双安定性をもつ非線形差分方程式

岡本和也¹, 友枝明保²

¹ 武蔵野大学大学院 工学研究科 数理工学専攻 ² 関西大学 総合情報学部

概要

交通流を記述する数理モデルの中でも、巨視的モデルは、交通ネットワークシミュレーションな どの大規模な数値計算において、計算コストを低減できるという利点がある.本研究では、交通 流に実験的に見られる一般的な特徴である「双安定性」に着目し、交通流を巨視的に記述する新 しい非線形差分方程式を提案した.その結果、一様解の安定性という観点から、本モデルのパラ メータが交通渋滞を解消する可能性があることがわかった.さらに、提案モデルと他の交通流モ デルとの対応関係を調べるために超離散極限と連続極限の結果を示した。

Nonlinear difference equation with bi-stability as a new traffic flow model

Kazuya Okamoto¹, Akiyasu Tomoeda ²

¹ Department of Mathematical Engineering, Graduate School of Engineering, Musashino University
² Faculty of Informatics, Kansai University

Abstract

Among mathematical traffic flow models, macroscopic models have the advantage of reducing computational costs in large-scale numerical calculations such as transportation network simulations. In this study, we focus on bi-stability, which is a general feature empirically observed in a traffic flow, and propose a new nonlinear difference equation that describes a traffic flow at the macroscopic level. We found that the parameters in our model have the potential to eliminate traffic jams from the perspective of stability of a homogeneous flow. Moreover, ultradiscrete and continuous limit results are presented to investigate the correspondence between the proposed model and other models.

1 Introduction

The dynamics of traffic flow includes instabilities as the average traffic density increases. In other words, a free flow is stable when the vehicle density is low, but becomes unstable when the vehicle density exceeds the critical density. In the latter case, the traffic flow transits from a free flow into another stable state, which corresponds to a jamming flow observed as a spontaneous traffic jam. As an example, Gasser et al. [1] proved that the instability of a free flow is understood by Hopf bifurcation; they numerically showed the global bifurcation structure possessed by the optimal velocity (OV) model [2]. The OV model is a carfollowing model describing an adaptation to the optimal velocity that depends on the headway between two neighboring vehicles; it is well known for its successful explanation of the mechanism of spontaneous traffic jams. The results of Gasser et al. show that the Hopf bifurcation behavior is locally supercritical, but macroscopically exhibits a subcritical structure. The optimal velocity model reproduces "bi-stability" at a certain density region, in which free and jamming flows coexist. It should be emphasized here that this bi-stability is a general feature empirically observed in traffic flows [3]. Many mathematical models have been proposed to reproduce traffic flow. These models can be approximately classified into three types: (i) density wave model/gas-kinetic models (partial differential equation), (ii) car-following models (ordinary differential equation), and (iii) cellular automaton models (max-plus algebra/master equation/rule-based algorithm). Our interest is in designing a precise traffic flow model and the relationship between these descriptions. For example, the cellular automaton model derived from partial differential equation with bi-stability. Furthermore, the correspondence also facilitate the development of a mathematical analysis method for a cellular automaton model for which analysis methods have not been developed. Clarifying the correspondence, and understanding the structure of the solution, are extremely significant from an algebraic point of view. Hence, the aim of this study is to propose and analyze a new nonlinear difference equation with bi-stability, and to then show both models obtained by continuous and ultradiscrete limits.

2 A new mathematical model considering past weights

2.1 Proposed model

We propose the following nonlinear difference equation as a new model:

$$\rho_x^{t+\Delta t} = \rho_x^t - \rho_x^t b_x^t + \rho_{x-\Delta x}^t b_{x-\Delta x}^t$$
(1a)
$$b_x^t = (1 - \rho_{x+\Delta x}^t) \times \left\{ 1 - \left((1 - \alpha) \rho_x^{t-\Delta t} + \alpha \rho_{x+\Delta x}^{t-\Delta t} \right) \right\},$$
(1b)

where ρ_x^t is the density at a lattice x and a time tand α is the parameter takes the value (0, 1) and b_x^t is the transition rate of vehicles at a lattice xand a time t. In this model, one-dimensional road is divided into a lattice, and the conservation law of vehicles for each lattice is described. The effect of $\left\{1 - \left((1 - \alpha)\rho_x^{t-\Delta t} + \alpha\rho_{x+\Delta x}^{t-\Delta t}\right)\right\}$ is to decide whether to move to the lattice in front depending on the congestion in the vicinity. The effect of $(1 - \rho_{x+\Delta x}^t)$ is to brake suddenly when there is a leading can $\rho_{x+\Delta x}^t = 1$. α represents the strength of the dependence on congestion in the vicinity of the driver's own location.

2.2 Numerical experiments and linear stability analysis for the new model

We focus on the bi-stability as the model to confirm the validity of the traffic flow model. First we numerically investigate a homogeneous flow with a perturbation. In our numerical experiments, we impose the periodic boundary condition, and then set $\Delta x = 1, \Delta t = 1, x \in \{1, 2, 3, \dots, L\}$, where *L* is the number of lattices. The initial value of ρ_x^0 is set as follows:

$$\rho_x^0 = \rho_0 + A \sin \frac{2\pi x}{L},\tag{2}$$

where ρ_0 is the density at $x \in \{1, 2, 3, \dots, L\}$, and A is the amplitude of the perturbation. We assume that $\rho_x^0 = \rho_x^1$ as the initial value.

We found that the model (1) shows bi-stability at least at $\rho_0 = 0.5$. It was found that, if the perturbation is small, the density wave converges to the homogeneous solution; However, if the perturbation is not small, the density wave converges to a traveling wave solution, which is expected to be another solution. In the latter case, as shown in Fig.1 (b), the initial perturbation grows into a traveling wave. This traveling wave solution is observed to propagate in the direction opposite to the direction in which the cars move. This feature is consistent with the fact that a jam cluster in a real traffic jam propagates backward [4].

Next, a linear stability analysis was performed on the model. The bi-stable region was investi-

Figure 1: Numerical solutions for two cases (a) A = 0.1, (b) A = 0.3 with $\rho_0 = 0.5$, $\alpha = 0.2$. The dashed line is the initial value, and the solid line is the converging numerical solution plotted at t = 10,000.

gated numerically. The results are shown in Fig. 2. From these analyses, it was found that the unstable region of the homogeneous solution disappears for $\alpha > 0.401$. This suggests that by controlling the parameter α in the real traffic flow, it is possible to always maintain the free flow.

Figure2: Graph with L = 100. The solid curve represents the neutral stability obtained by the linear stability analysis. The points represent the bi-stable region, which is obtained numerically.

3 Ultra-discrete and continuous limit

3.1 Ultra-discrete limit

As one of our aims, we would like to see the correspondence between the ultra-discretized model and the cellular automaton model. Using the variable transformations $\rho_x^t = e^{-U_j^n/\varepsilon}, 1-\rho_x^t = e^{-V_j^n/\varepsilon}, \alpha = e^{-A/\varepsilon}, 1-\alpha = e^{-B/\varepsilon}$, and taking the limit $\varepsilon \to +0$,

we obtain the following ultra-discrete equations:

$$U_{j}^{n+1} = \min \left[U_{j}^{n} + U_{j+1}^{n}, B + V_{j+1}^{n} + U_{j}^{n} + U_{j}^{n-1}, A + V_{j+1}^{n} + U_{j}^{n} + U_{j+1}^{n-1}, A + U_{j-1}^{n} + V_{j}^{n} + V_{j}^{n-1}, B + U_{j-1}^{n} + V_{j}^{n} + V_{j-1}^{n-1} \right],$$
(3a)

$$V_{j}^{n+1} = \min \left[V_{j-1}^{n} + V_{j}^{n}, A + V_{j+1}^{n} + V_{j+1}^{n-1} + U_{j}^{n}, \\ B + V_{j+1}^{n} + V_{j}^{n-1} + U_{j}^{n}, \\ B + V_{j}^{n} + U_{j-1}^{n} + U_{j-1}^{n-1}, \\ A + V_{j}^{n} + U_{j-1}^{n} + U_{j}^{n-1} \right],$$
(3b)

$$0 = \min\left[U_j^n, V_j^n\right], \tag{3c}$$

$$0 = \min[A, B], \tag{3d}$$

where $\{0, \infty\}$ in U_j^n and V_j^n correspond to $\{1, 0\}$ in the cellular automaton models. Note that $U_j^n, V_j^n, A, B \in \mathbb{R}_{\geq 0} \cup \{\infty\}$ owing to the inequality $0 \leq \rho_x^t, \alpha \leq 1$.

3.2 Continuous limit

We are also interested in the correspondence between our model (1) and previous density wave models.

We perform the Taylor expansion for (1a) and take the terms of the second order. If we take the limit $\Delta x \rightarrow 0$, $\Delta t \rightarrow 0$, keeping the maximum velocity $V_{\text{max}} = \Delta x / \Delta t$ finite, we obtain

$$\frac{\partial \rho}{\partial t} = -V_{\max} \frac{\partial(\rho b)}{\partial x} \tag{4}$$

where b = b(x, t) is the limit of b_x^t . Setting $v(x, t) = V_{\max}b(x, t)$, we obtain the continuous equation:

$$\frac{\partial \rho}{\partial t} = -\frac{\partial(\rho v)}{\partial x}.$$
(5)

Substitution (1a) into (1b) gives

$$b_x^{t+\Delta t} = \left\{ 1 - (\rho_x^t - \rho_x^t b_x^t + \rho_{x-\Delta x}^t b_{x-\Delta x}^t) \right\} \\ \times \left\{ 1 - \left((1-\alpha)\rho_x^t + \alpha\rho_{x+\Delta x}^t \right) \right\}.$$
(6)

Adding $-b_x^t + (b_{x+\Delta x}^t - b_{x-\Delta x}^t)/2$ to both sides of (6), performing a Taylor expansion, and setting

$$1/\tau \stackrel{\text{def}}{=} \Delta x/\Delta t^2, \text{ we obtain}$$

$$\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} = V_{\max}(1-\rho)$$

$$\times (v - 2V_{\max}\rho^2 - 3V_{\max} - \alpha V_{\max})\frac{\partial\rho}{\partial x}$$

$$+ V_{\max}\rho(1-\rho)\frac{\partial v}{\partial x} + \frac{1}{V_{\max}}\frac{V(\rho) - v}{\tau},$$
(7)

where $V(\rho) = V_{\text{max}}(1-\rho)^2$, which is the optimal velocity in a homogeneous flow. Thus, the continuous limit of model (1) is

$$\frac{\partial \rho}{\partial t} = -\frac{\partial(\rho v)}{\partial x},$$
(8a)
$$\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} = V_{\max}(1-\rho)$$

$$\times (v - 2V_{\max}\rho^2 - 3V_{\max} - \alpha V_{\max})\frac{\partial \rho}{\partial x}$$

$$+ V_{\max}\rho(1-\rho)\frac{\partial v}{\partial x} + \frac{1}{V_{\max}}\frac{V(\rho) - v}{\tau}.$$
(8b)

Note that the third terms on the right-hand side correspond to the self-driven force (inner-force) term used in the models of previous studies [5, 6].

4 Conclusion

In this study, we proposed a new traffic flow model described by a nonlinear difference equation and investigated the model both numerically and analytically. As a result, we analytically obtained the linear stability condition and numerically clarified the existence of the bi-stability region, where the solutions converge to different flows depending on the magnitude of the initial perturbation. Moreover, the parameters in our model have the potential to eliminate traffic jams from the perspective of a homogeneous flow stability. We also investigated the correspondences of our model with other models by taking two limits, that is, the ultradiscrete limit and a continuous limit. However, the specific correspondence with other CA models and density wave models has yet to be confirmed. Future studies will include analytically finding the bi-stability region and confirming a more detailed correspondence between the ultradiscrete and continuous limits.

References

- I. Gasser, G. Sirito, and B. Werner, Physica D 197, (2004), 222–241.
- [2] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, Phys. Rev. E, 51, (1995), 1035-1042.
- [3] M. Treiber, and A. Kesting, Traffic flow dynamics: Data, Models and Simulations, Springer-Verlag Berlin Heidelberg, (2013).
- [4] J. Treiterer, J. Myers, Transp. Traffic Theory, 6, (1974), 13–38.
- [5] H. J. Payne, Mathematical Models of Public Systems 1, (1971), 51-61.
- [6] B. S. Kerner and P. Konhauser, Phys. Rev. E, 48, (1993), R2335–R2338.

高膨潤性ゲル粒子からなる粉体ベッド中への 液体注入時のパターン遷移

乙黒康次郎¹, 吉井究², 住野豊^{1,3}

¹東京理科大学 理学研究科 応用物理学専攻 ²大阪大学 基礎工学研究科 機能創成専攻 ³東京理科大学 総合研究院 ウォーターフロンティア研究センター/コロイド界面部門

概要

膨潤率の大きいゲル粒子を乾燥させ充填させた粉体ベッドを擬2次元セル内に封入した.この中 に、塩濃度を調整した塩化ナトリウム水溶液を異なる注入速度で注入した.高注入速度では等方 的な浸透様相が観察されたのに対して、低注入速度では粒子の膨潤に伴い非等方な指型構造が観 察された.これらのパターンの遷移は粒子の膨潤速度と注入速度により決まる特徴的な時間ス ケールの比によって理解されることが分かった.

Pattern transition of injected fluid into a granular bed of highly-swelling gel particles

Kojiro Otoguro¹, Kiwamu Yoshii², Yutaka Sumino^{1,3}

¹Department of Applied Physics, Faculty of Science Division I, Tokyo University of Science, ²Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University

³WaTUS and DCIS, Tokyo University of Science

Abstract

Saline water of sodium chloride was injected with controlled injection rates into a granular bed in a quasi-two dimensional cell. The granular bed was made of dried highly-swelling gel particles whose swelling rate was controlled by the salinity of the injected fluid. For high injection rate, injected fluid percolated between gel particles isotropic manner. For low injection rate, the anistropic finger-like structures of injected fluid front was observed. The transition of the injection pattern can be understood by the ratio of characteristic timescale of swelling and injection.

1 はじめに

ヘレショウセルと呼ばれる空隙の小さな擬2次元 セル中に満たした高粘性流体を低粘性流体で置換す ると,界面が指状に波打つことが知られている[1]. このような界面変形は粘性突起と呼ばれ,Saffman-Taylor不安定性に起因して発生する.また,粉体ベッ ドへ流体を注入した際に流体が粉体を押しのけて形 成される指状パターン形成現象も散逸構造の代表例 として盛んに研究されている [2]. これらの注入パ ターンは主に注入速度を大きくすると高波数の不安 定化が生じることが知られている.また,こうした ダルシー則に支配されるような多孔質中の流体の移 動プロセスは地盤中で盛んに発生している [3].岩石 は脆性的な振る舞いだけでなく,ひずみ速度によっ ては粘性的な振る舞いもするため,粘弾性体への流 体注入も重要な研究対象である [4].流体移動のダイ ナミクスを知ることは岩盤中の流体圧の時空構造を 知ること,引いては注入誘起地震に見られる様な地 震現象の予測にも有用であることも提唱されている [5].特に,地盤中で流体が移動する際は岩石の間隙 水に融解したシリカが析出することがあり,この化 学反応に伴う透水性の変化が重要な役割と果たすこ とが知られている[6].以上の状況を考えると,単純 な粉体ベッドへの液体注入に止まらず,化学反応な どにより透水率が変化するモデル実験系の構築とそ の観察が必須な状況にある.

そこで本研究では、透水性の変化率が大きい荷電 ゲル粒子から成る粉体ベッドに着目した.荷電性ゲ ルは溶媒中の塩濃度により膨潤速度を制御できる. そこで、乾燥したゲル粒子を擬2次元セル内に充填 し粉体ベッドを構成した。このセル中に注入する溶 液の塩濃度および注入速度をパラメータとして注入 実験を行った.その結果、それぞれの塩濃度に対し て注入速度が大きい場合は注入溶液の先端が等方に 進展する様子が観察された.一方、注入速度が小さ い場合は、注入先端が非等方になり指型構造の注入 先端が観察された.本研究ではゲル粒子の膨潤速度 を測定し、注入速度と定量的に比較することで、こ れらの注入パターンの遷移が、ゲル粒子の膨潤速度 と注入速度の比によって決まることを示した.

2 実験設定

本研究で用いた実験系を図 1(a) に示す. セルは厚 さ5 mm の2枚のアクリル板を用い, 1 mm の空隙 をスペーサにより確保したものを用いた. セルの一 端に注入口 (ルアーフィッティング VPRF206, アイ シス)を設け,内径 2.5 mm,外径 4 mm,長さ 570 mm のナイロンチューブ (日本ピスコ)を接続し,も う一端をシリンジポンプ (CXF1010,株式会社アイ シス)に接続することで溶液を注入した.

試料としては、ポリアクリル酸ナトリウムからなる 50%粒子径 350 µm で真球凝集状のゲル粒子 (ア クアキープ SA60S,住友精化)を用いた.塩化ナト リウムは富士フイルム和光純薬より購入した.注入 溶液には塩化ナトリウム水溶液を 25°C で質量パー セント濃度 C とし、パラメータとして制御した.

本研究で用いたゲル粒子はポリアクリル酸ナトリ ウムからなり荷電基を持つ.そのため,高分子鎖上 の荷電基間の静電反発により高い膨潤能力を示す[7]. この膨潤能力は,添加する水溶液のイオン濃度によっ て変化し,高イオン濃度では静電反発が抑止される 影響で低下する.本研究では塩化ナトリウム水溶液 を用いることで,ゲル粒子の膨潤率および膨潤速度 を変化させた.ゲル粒子は乾燥時には真球凝集状で

図 1: 実験系の模式図. (a) 実験を行ったアクリル製 のセル. 1 mm の空隙をもつセル中にゲル粒子を上 方の開口部より導入した. その後。もう一方の閉口 された一端より溶液を注入した. (b) 観察時の実験 設定. 注入口からナイロンチューブでつないだシリ ンジポンプによって定速で液体を注入した. この際 上方より光を当て, ゲル粒子と液体の振る舞いを下 方より CMOS カメラで撮影した.

あるが,塩化ナトリウム水溶液により膨潤すると柔 らかくなり系の空隙をみたすように変形する.

本実験では粉体ベッドをセル中に作成した. セル を開口部が上部になるように垂直に立て開口部より ゲル粒子を導入した. この際,ゲル粒子は摩擦や静 電気により壁面に吸着するため,壁面の静電気除去 を行った後,10回程度タッピングすることでゲル粒 子を落下させ下部に充填した. 以上のプロセスをセ ル中にゲル粒子が満たされるまで繰り返し粉体ベッ ドを作成した. 注入口の内径は2.5 mm であり,こ の小さな流路の付近でゲル粒子が膨潤し流路閉塞が 生じると溶液の注入に必要な圧力が著しく大きくな り,注入が困難になる. このため,液体注入を実現 するために注入口付近には0.4 mm のガラスビーズ を0.15g程度ゲル粒子の代わりに設置している. ゲ ル粒子は11g程度セルに導入した.

以上の手順でゲル粒子を封入したセルを水平に設置し,図1(b)に示す実験設定で注入溶液をシリンジ ポンプにて等速で注入した.注入速度*I*はパラメー タとし制御した.注入時のゲル粒子及び流体の振る 舞いを CMOS カメラにより撮影した.

図 2: (a) 界面様相の注入速度 I 及び, 濃度 C 依存性 (注入溶液が 5 mL 注入された時点の様子). スケー ルバー:140 mm. (b)I = 0.1 mL/min., C = 20 wt% (c)I = 32 mL/min., C = 20 wt%の界面進展の様 相を示す. 高速度の注入では等方的に流体が流れ, 低速度注入では等方性が破れた. 注入速度 I が大きい 場合, 注入溶液が等方的に広がる様子が観察された. 一方, 注入速度 I が小さい場合, 注入先端で指型構 造が観察された.

3 結果および考察

典型的な実験結果を図2に示す.この図は5mL の注入溶液がセル中に導入された際の様子を示して いる.注入溶液の到達していない領域では明るい影 の領域として観察される.注入速度 I が大きい場合 粒子の膨潤が顕著に見られず,注入溶液が到達し暗 い影になった領域が等方的に広がる様子が観察され た.一方,注入速度 I が小さい領域では注入先端部 分は注入溶液の進行に伴い暗い影の領域として観察 され,より内側の部分では光を透過する透明な領域 が観察された.また,この透明な領域が観察される 際には,等方的な注入先端の進展は阻害され,非等 方的な指型構造が観察された.

以上の注入様相の詳細を明らかにするため,注入 実験時に溶液進展領域の一部を拡大して観察した. この観察結果を,図3に示す.図3(a,b)はそれぞれ 指型構造,等方進展が観察された際の溶液注入先端 の様子に相当している.図3(a-1,b-1)に示すように, 注入溶液が画像内の領域に侵入し始めた直後の画像 で,未膨潤のゲル粒子の中から6つのゲル粒子を選 択し(1~6)追跡した.注入溶液が撮影箇所を通過 した画像が図3(a-2,b-2)であり,各々溶液侵入直後 の画像から44秒,10秒後の様子を示している.

図 3(a) は,指型構造が観察される注入速度での透明な領域と暗い影の領域の境界に相当する.透明な 領域内にはゲル粒子が流される様子も観察され,こ の領域内のゲル粒子は概ね十分に膨潤しきった状態 であると考えられる.暗い影として観察された部分 は膨潤によりゲル粒子が流路を閉塞しているように 見られる.このことから,指型構造の先端では,流 路を閉塞している膨潤したゲル粒子を,流体および 流体に分散した完全に膨潤したゲル粒子が押しのけ て進展していると考えられる.

等方的な注入溶液の進展が観察された様子を拡大 観察したものは図 3(b) となる.全体の観察時 (図 2(c)) とは異なり,溶液通過により粒子近傍が明るく なる様子が観察された.また粉体の隙間を注入液体 が浸透してく際,粒子はほとんど移動していなかっ た.これにより,等方的な溶液先端の進展が見られ るには,注入液体が粒子の膨潤による流路閉塞に邪 魔されることなく粒子の隙間を浸透することが必要 であることが分かる.

以上の議論よりこれらの注入パターンの遷移を理 解する上では,粒子の膨潤速度と注入速度の比が重 要となることが示唆される.この議論を定量的に行 うため,塩化ナトリウム水溶液によるゲル粒子の膨 潤速度を光学顕微鏡による直接観察により測定した. この測定結果を図4に示す. $l/l_0 = 2.5$ 程度までの領 域についてはいずれの濃度でも線形で膨潤すること が観察され,この領域で線形近似を行った.この結 果から,粉体の膨潤時間スケールとして粉体がセル の空隙程度 (1 mm)まで膨らむのに必要な時間 t_s を それぞれ 13 s (C = 0 wt%), 96 s (C = 5 wt%), 236 s (C = 20 wt%) と得た.

こうして得られたゲル粒子の膨潤速度により決ま る特徴的時間 t_s に対して,流動の特徴的時間スケー

図 3: 溶液進展様相の拡大図. (a) I = 0.1 mL/min., C = 0 wt% (b) I = 3.2 mL/min., C = 20 wt%に 対応する.スケールバー: 2 mm. (a-1,b-1) は注入 溶液が画像内の領域に侵入し始めた直後に相当する. 青点で示した位置にある粒子を1から6と付番した. (a-2,b-2) は注入溶液通過後に相当する.それぞれ侵 入直後の画像から,44秒,10秒後である.赤点で 示した位置にある粒子1から6は (a-1,b-1) で示し た同じ番号の粒子と対応し,線は各粒子の軌跡である.

ル t_i は、実験終了までの注入量 $Q_t = 5 \text{ mL}$ と注入速度Iを用いて、 $t_i = Q_t/I$ と表すことが出来る. 膨潤速度と流動速度の特徴的時間スケールの比による無次元量 $\alpha = t_s/t_i$ を導入すると、パターン遷移様相との強い相関が見られ、 α が1程度でパターンの遷移が見られることが分かった。 α が大きい場合は、等方的な界面進展が発生する一方で、 α が小さい場合は指型の非等方的な界面の進展が見られた. これは、粒子が膨潤することで流路の閉塞が起こった事が要因であると考えられる.

4 まとめ

本研究では,透水性の時間・空間変化に伴う注入様 相の変化を観察する擬2次元セルからなる実験系を 構築した.特に高膨潤性ゲル粒子かならる粉体ベッ ドに着目し,注入溶液の塩濃度を変化させることで 注入速度に加えて膨潤速度をパラメータとして注入 実験を行った.通常,こうした擬2次元セル中でのパ ターンは,高流量の際に不安定化が生じるが[1,2], 本系では注入速度が小さいと等方的な注入先端が不 安定化した.この不安定化は,膨潤性ゲル粒子の膨 潤速度が起因となって生じていると考えられ,注入 速度と膨潤速度で定まる時間スケールの比αにより 支配されると示された.

図 4: ゲル粒子の直径 $l \circ t$ 依存性. 膨潤前の直径 l_0 を基準として、 l/l_0 の時間依存性を C = 0, 5, 20 wt %に対して示した. それぞれの濃度に対して異なる 3 つの粒子に対して測定を行った. これらの結果に 対して $l/l_0 = 2.5$ となる領域で線形近似を用い、無 次元化したセルの空隙長 $l/l_0 \sim 2.9$ に膨潤するまで の時間 t_s をそれぞれ 13 s (C = 0 wt%), 96 s (C = 5wt%), 236 s (C = 20 wt%) として得た.

謝辞

本研究は JSPS 科研費 16H06478, 21H01004, 21H00409, 21J13720, 及びホソカワ粉体工学振興 財団の支援を受けた.

参考文献

- J. Nittmann, G. Daccord, H. E. Stanley Nature, **314**, 141-144 (1985).
- [2] Ø. Johnsen, R. Toussaint, K. J. Måløy, and E.
 G. Flekkøy, *Phys. Rev. E*, **74**, 011301 (2006).
- [3] D. M. Saffer, and H. J. Tobin, Annu. Rev. Earth Planet Sci., 39, 157-186 (2011).
- [4] T. Hirata, *Phys. Rev. E*, **57**, 1772-1779 (1998).
- [5] W. Ellsworth, *Science*, **341**, 1225942 (2013).
- [6] P. Audet, and R. Bürgmann, *Nature*, **510**, 389-392 (2005).
- T. Tanaka, D. Fillmore, S.-T. Sun, I. Nishio,
 G. Swislow, and A. Shah, *Phys. Rev. E*, 45, 1636-1639 (1980).

濡れた粉体の履歴に依存したレオロジー特性

吉井究, 大槻道夫

大阪大学 基礎工学研究科 機能創成専攻

概要

摩擦のある濡れた粉体のレオロジー特性を離散要素法により調べた. せん断応力が非常に小さい 低せん断速度の状態からせん断速度を段階的に上げると, せん断応力が急激に大きくなるシア シックニングが観測された. さらに, その応力が大きい状態からせん断速度を段階的に下げると, せん断速度0の極限においても有限の大きさのせん断応力が残る履歴に依存した応力変化が発生 することを確認した. また, その状態変化が接触点数の変化と対応することを発見した.

History-dependent rheological property of wet granular materials

Kiwamu Yoshii, Michio Otsuki

Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University

Abstract

We numerically investigate the rheological property of wet granular materials. As the shear rate sequentially increases, the granular materials exhibit shear thickening, where the shear stress abruptly increases. As the shear rate sequentially decreases from the high shear rate state, the rheological property shows a hysteresis, where the shear stress remains even in the limit of $\dot{\gamma} \rightarrow 0$. It is also shown that the history-dependent shear stress corresponds to the change in the coordination number.

1 はじめに

粉や砂のような巨視的なサイズの粒子の集合体で ある粉体は、粒子の密度が閾値より高いと、剛性を 有し固体的に振る舞う一方、その閾値より低い場合 は剛性を示さず流体的に振る舞う.この力学的特性 の変化はジャミング転移と呼ばれ、近年盛んに研究 されている [1, 2].特に、粒子間に接触による反発 相互作用だけが働く乾いた粉体系の転移点近傍の振 る舞いについては、多くのことが明らかになってい る.例えば、粒子間摩擦がない場合、ジャミング密 度より低い密度では、せん断応力 σ_{xy} がせん断速度 γ の2乗に比例する流体的なバクノルド則が成り立 つ [3].一方、ジャミング密度より高密度の場合は、 $\gamma \rightarrow 0$ の極限においても有限のせん断応力が残る 固体的な振る舞いが発現する [4].また,粒子間摩擦 がある粉体系では低密度状態において,あるせん断 速度でせん断応力が急激にジャンプする不連続シア シックニングが発生する [5, 6].

ところが,現実の粉体は濡れを伴う場合が多く, そのような系で乾いた粉体の挙動がそのまま観測さ れるかは不明である.実際,粉体は少量の水を加え るだけで,応力ひずみ曲線などのレオロジー特性が 大きく変化することが知られている[7].これは粒子 間に入り込んだ液体が表面張力によって架橋を形成 し,実行的な引力相互作用を与えることに起因する [8,9].この引力は液体架橋が切れると,粒子同士が 再び接触するまでは再び働かないという履歴依存性 を示す.従来の濡れた粉体の研究では,そのような 履歴効果がレオロジー特性にどのような影響を与え

図 1: (a) 法線方向の相互作用力 F_{ij}^n . 初め粒子同士が接触しておらず液体架橋がない場合,引力は働かない (薄 紅線). 粒子同士が接触すると液体架橋の形成によって引力が働き,粒子間距離が架橋が切れる距離 d_c を超え て粒子が離れるまでは引力が働く (青線). (b) せん断の与え方のプロトコル. $\dot{\gamma} = 0$ の静止状態から,せん断 速度 $\dot{\gamma}_{ini}$ で十分歪みを加えた後,段階的にせん断速度を増加させる. $\dot{\gamma} = \dot{\gamma}_{max}$ に達した後,今度は段階的に せん断速度を $\dot{\gamma} = 0$ まで下げる.

るかはほとんど調べられていない.

そこで、濡れた粉体のレオロジー特性を調べるた め、濡れによる引力を取り入れた粒子シミュレーショ ンを実施した.具体的には、一定体積容器中に封入 した粉体にせん断を加え、せん断速度を段階的に変 化させた際の履歴に依存した力学的応答を調べた.

2 設定

本研究では、N 個の濡れた摩擦のある 3 次元粉体 粒子の離散要素法によるシミュレーションを行った [10]. 長さ L の立方体に充填率 ϕ で, 直径 $1.0d_0$ と $1.4d_0$ の粒子を 1:1 の比率で封入した. 各々の粒子の 質量密度は一定とした.

粒子 *i*, *j*間の法線方向の力 $F_{ij}^{n,tot}$ は,反発力 F_{ij}^{n} と濡れによる引力 F_{ij}^{cap} によって $F_{ij}^{n,tot} = F_{ij}^{n} + F_{ij}^{cap}$ で与えられる. F_{ij}^{n} は弾性の寄与 $F_{ij}^{n,el} = k_n \Delta_{ij}$ と 粘性の寄与 $F_{ij}^{n,diss} = -\eta_n(v_{ij} \cdot n_{ij})$ によって $F_{ij}^{n} =$ $(F_{ij}^{n,el} + F_{ij}^{n,diss})\Theta(\Delta_{ij})$ で表される. ここで,法線 方向の弾性定数を k_n ,粘性係数を η_n として, $\Delta_{ij} =$ $d_{ij} - r_{ij}, d_{ij} \equiv (d_i - d_j)/2, v_{ij} \equiv (v_i - v_j) \cdot n_{ij},$ $n_{ij} = r_{ij}/|r_{ij}|, r_{ij} \equiv r_i - r_j, r_{ij} = |r_{ij}|$ とし た. d_i, r_i, v_i は粒子 *i* の直径,位置,速度である. $\Theta(x)$ は, ヘヴィサイドの階段関数であり, $x \ge 0$ では $\Theta(x) = 1$, それ以外では $\Theta(x) = 0$ の値をと る. 液体架橋が形成されている場合の濡れによる引 力 F_{ij}^{cap} は

$$F_{ij}^{\text{cap}} = \begin{cases} -2\pi\gamma_s D_{ij}\cos\theta & (\Delta_{ij} \ge 0), \\ \frac{-2\pi\gamma_s D_{ij}\cos\theta}{1+1.05\hat{s}_{ij}+2.5\hat{s}_{ij}^2} & (-d_{\text{c}} \le \Delta_{ij} < 0), \\ 0 & (\Delta_{ij} > -d_{\text{c}}) \end{cases}$$
(1)

と表される [11]. ここで $D_{ij} = 2d_i d_j / (d_i + d_j), \hat{s}_{ij} =$ $s_{ij}\sqrt{D_{ij}/V_b}, s_{ij} = -\Delta_{ij}$ とした.また θ は液体架 橋と粒子表面との接触角、 γ_s は表面張力係数、 d_c は 液体架橋の切れる距離, V_b は粒子間に含まれている 水分量とした. 粒子同士が十分に離れて接触してい ない時は、粒子間に液体架橋が形成されず $F_{ii}^{cap} = 0$ とする. その状態から粒子間距離が狭まり, $\Delta_{ij} > 0$ となって粒子同士が接触すると液体が粒子間に架橋 を形成し、 $\Delta_{ii} < -d_c$ となって架橋が再び切れるま で F_{ii}^{cap} は式 (1) で与えられる.図 1(a) に Fⁿ_{ii} の振 る舞いを示した.また,接線方向の摩擦力 F^t_{ii} は, $F_{ij}^t = \min(| ilde{F}_{ij}^t|, \mu F_{ij}^{ ext{n,tot}}) \Theta(\Delta_{ij})$ で与えられる. こ こで、 \vec{F}_{ij}^t は、 $\vec{F}_{ij}^t = k_t \boldsymbol{\xi}_{ij} - \eta_t \boldsymbol{v}_{ij}^t$ とした. μ は粒子間 の摩擦係数である. k_t は接線方向の弾性定数, η_t は接 線方向の粘性係数である. 接線方向の変位 **ξ**_{ij} は, 接 線方向の速度差 $\boldsymbol{v}_{ij}^t = \boldsymbol{v}_{ij} - \boldsymbol{n}_{ij}(\boldsymbol{n}_{ij}\cdot\boldsymbol{v}_{ij}) - 1/2(d_i\boldsymbol{\omega}_i +$ $d_{j}\boldsymbol{\omega_{j}}) imes \boldsymbol{n}_{ij}$ を用いて、 $\boldsymbol{\xi}_{ij}(t) = \int \boldsymbol{v}_{ij}^{t}(t') dt'$ で与え られる. この積分は $|\tilde{F}_{ij}^t| < \mu F_{ij}^{n,tot}$ が満たされてい る間実行される. ω_i は粒子iの角速度ベクトルであ る.また、各々の時間ステップで $\boldsymbol{\xi}_{ij} \cdot \boldsymbol{n}_{ij} = 0$ を満 たすために、 $\boldsymbol{\xi}_{ij}(t) - (\boldsymbol{\xi}_{ij}(t) \cdot \boldsymbol{n}_{ij})\boldsymbol{n}_{ij} \rightarrow \boldsymbol{\xi}_{ij}(t)$ と更 新した [10]. したがって, 粒子 i の運動方程式は

$$m_i \frac{\mathrm{d}^2 \boldsymbol{r}_i}{\mathrm{d}t^2} = \sum_{j \neq i} (F_{ij}^{\mathrm{n,tot}} \boldsymbol{n}_{ij} + F_{ij}^{\mathrm{t}} \boldsymbol{t}_{ij}) \qquad (2)$$

と書ける.ここで m_i は粒子の質量である.また接 線方向ベクトルは $t_{ij} = ilde{F}_{ij}^t / | ilde{F}_{ij}^t|$ とした.

初期状態として、目標の充填率 ϕ より低い充填率 $\phi_{ini} = 0.40$ のランダムな粒子配置を用意した.その 後、系の充填率を $\Delta \phi$ ずつ段階的に増加させ、各段 階で力学的に安定な状態に緩和させ、目標の充填率 $\phi = 0.48$ まで系を圧縮する.ここで粉体温度を $T \equiv (\sum_i m_i |\mathbf{v}_i|^2/2)/N$ として、 $T < T_{th}$ を満たしたとき

を力学的安定状態と定義した.また、 $\Delta \phi = 0.00005$ 、 $T_{\rm th} = 10^{-8} k_n d_0^2$ とした. Lees-Edwards 境界条件と SLLOD 法を用いることで、xy 平面にせん断速度 $\dot{\gamma}$ で特徴づけられる一様せん断状態を実現する [12]. 今 回は履歴依存性を調べるためにせん断速度を図 1(b) に示すように段階的に変化させる.はじめ、 $\dot{\gamma} = 0$ の静止状態からせん断速度 $\dot{\gamma} = \dot{\gamma}_{ini}$ として十分なせ ん断歪みを加え,その後,段階的にせん断速度を増 加させる. $\dot{\gamma} = \dot{\gamma}_{max}$ に達した後、今度は段階的にせ ん断速度を $\dot{\gamma} = 0$ まで下げる. この各々の過程をそ れぞれ UP と DOWN と呼ぶ. 各々のせん断速度で, せん断ひずみ γ は $\gamma \simeq 10$ 程度加えており、物理量 の計測には後半の $\gamma \geq 7$ のデータを用いた. 粒子数 N = 1000, 摩擦係数 $\mu = 1.0$ として, $k_t = (2/7)k_n$, $\eta_t = (2/7)\eta_n \sqrt{mk_n}, \ \theta = \pi/9, \ \gamma_s = 3.0 \times 10^{-2}/k_n,$ $d_c = 5.0 \times 10^{-6} d_0, \ \dot{\gamma}_{\rm ini} = 1.0 \times 10^{-6} (m/k_n)^{1/2},$ $\dot{\gamma}_{
m max} = 4.47 imes 10^{-5} (m/k_n)^{1/2}$ と設定した. 粒子の 時間発展は、位置を速度アダムス・モルトン法の2 段法,速度をアダムス・バッシュホース法の2段法 を用い、時間刻みは $\Delta t = 0.005 (m/k_n)^{1/2}$ を用い計 算した.

3 結果

3.1 せん断応力の履歴依存性

図 2: せん断応力 σ_{xy} の $\phi = 0.48$ における $\dot{\gamma}$ 依存 性. 赤のシンボルは UP, 青のシンボルは DOWN のプロセスに各々対応する. せん断応力が急に増 大する閾値 $\dot{\gamma}_c$ を点線で示す. 内挿図は, 両対数プ ロットでの振る舞いを示す. また破線は $\dot{\gamma}^2$ の傾き を表す.

図 2 に、 $\phi = 0.48$ におけるせん断応力 σ_{xy} のせん

断速度 $\dot{\gamma}$ 依存性を示した. ϕ の値は,せん断を加え る前の濡れた粉体系で剛性が発生するジャミング転 移点 $\phi_c \simeq 0.52$ より低く設定している.また,せん 断応力 σ_{xy} は以下の式

$$\sigma_{xy} = -\frac{1}{L^3} \sum_{i} \sum_{i < j} (r_{ij,x} F_{ij,y} + r_{ij,y} F_{ij,x}) \quad (3)$$

から求めた [13]. ただし, $F_{ij} = F_{ij}^{n,tot} n_{ij} + F_{ij}^{t} t_{ij}$ とした. UP の過程で γ が低い領域においては, せ ん断応力 σ_{xy} が $\dot{\gamma}^2$ に比例する流体的なバグノルド 則が観測される.しかし、せん断速度を上げていく と、ある閾値 ýc で応力が急激に増大し、その後、せ ん断速度を上げてもせん断応力はほとんど変化しな いことが確認された.また、せん断速度をさらに上 げ、 $\dot{\gamma} = \dot{\gamma}_{max}$ に達した後、せん断速度を $\dot{\gamma} = 0$ まで 段階的に下げる DOWN の過程では $\dot{\gamma} \rightarrow 0$ において も有限のせん断応力が残ることが確認された.この 結果,同じせん断速度でも UP と DOWN の過程で 応力が大きく異なる履歴依存性がみられる. 乾いた 摩擦のある粉体系でも類似の履歴依存性がみられる が、 $\dot{\gamma} \rightarrow 0$ の極限ではせん断応力の残らない流体的 な領域に戻るという点で、今回の濡れた粉体系での 結果とは大きく異なる [6].

3.2 接触点数と応力鎖

図 3: 接触点数 Z のせん断速度 ý 依存性. 赤のシンボルは UP, 青のシンボルは DOWN のプロセスに各々対応する.

図3の履歴依存性から、せん断によって系の構造も 変化したと予想し、構造を反映する粒子の接触点数の 変化を調べた.図3に $\phi = 0.48$ における接触点数Zのせん断速度依存性を示す.接触点数は、 $\Delta_{ij} \ge -d_c$ かつ液体架橋が存在している粒子ペアを接触点とし 求めた. UP の過程において接触点数 Z は増加し, その変化はせん断応力 σ_{xy} の増加に対応しているよ うに見える.また,DOWN の過程においては,一度 増加した接触点数が $\dot{\gamma} \rightarrow 0$ においても高せん断速度 での接触点数と同程度に保たれている.この結果か ら,せん断によって誘起された構造変化が,せん断 速度を下げていっても粒子間引力によって保持され, その結果 $\dot{\gamma} \rightarrow 0$ においてもせん断応力が残ると推察 出来る.また,充填率を濡れた粉体系でのジャミン グ転移点 $\phi_c \simeq 0.52$ より低く設定したが,接触点数 は理論的に剛性が発生するとされる下限値 $Z_{iso} = 4$ よりも大きい値を示す [2].この結果は,引力の働く 粒子系の先行研究と定性的に一致する [14, 15].

同様に、構造の変化をみるため、図4にUP(a)と DOWN(b)のプロセスにおけるせん断速度 $\dot{\gamma} = 0$ で の粒子配置と応力鎖の構造を示す.ここでは応力鎖 として、接触粒子間の力の大きさに応じた色の線を 接触粒子間に引いている.どちらの場合でも粒子の 接触はあるももの、せん断を加える前後で、粒子間 力の大きさが変化することがわかる.

図 4: $\phi = 0.48$ における粒子配置と応力鎖. (a)UP のプロセス中と (b)DOWN のプロセス中の $\dot{\gamma} = 0$ の結果を示す.応力鎖の色が粒子間の力の大きさ を表す.

4 まとめ

本研究では、摩擦のある濡れた粉体系におけるせん断応力の履歴依存性を示した. せん断速度を段階的に上げることで誘起された粒子間接触の変化が、 せん断速度を下げた後も粒子間引力によって保持され、それに対応して γ→0の極限において有限のせん断応力が残ること示した. この結果は、濡れた粉体系の履歴依存性を系統的に理解するのに有効なプロトコルを提案した事を意味する. 今後は、充填率の依存性や、せん断に誘起される構造についてより詳細を明らかにする必要がある.

謝辞

本研究は JSPS 科研費 19K03670, 21H01006, 21J13720 及びホソカワ粉体工学振興財団の支援を 受けた.また,本研究を行うにあたり京都大学基礎 物理学研究所の計算機システムを利用した.

参考文献

- A. J. Liu, and S. R. Nagel, *Nature* **396**, 21 (1998).
- [2] M. van Hecke, J. Phys.: Condens. Matter 22, 033101 (2009).
- [3] N. Mitarai, and H. Nakanishi, *Phys. Rev. Lett.* 94, 128001 (2005).
- [4] T. Hatano, M. Otsuki, and S. Sasa, J. Phys. Soc. Jpn. 76, 023001 (2007).
- [5] M. Grob, C. Heussinger, and A. Zippelius, *Phys. Rev. E* 89, 050201 (2014).
- [6] M. Otsuki and H. Hayakawa, *Phys. Rev. E* 83, 051301, (2011).
- [7] S. Herminghaus, Wet granular matter: a truly complex fluid. (World Scientific, Vol. 6. 2013).
- [8] G. Lian, C. Thornton, and M. J Adams, J. Colloid Interface Sci. 161,138, (1993).
- [9] C. D Willett, M. J Adams, S. A Johnson, and J. PK Seville, *Langmuir* 16, 9396, (2000).
- [10] S. Luding, Granular matter 10, 235, (2008).
- [11] S. Roy, S. Luding, and T. Weinhart, *Phys. Rev. E* 98, 052906, (2018).
- [12] D.J Evans and G.P Morriss, Statistical Mechanics of Nonequilibrium Liquids 2nd ed. (Cambridge University Press, 2008).
- [13] M. Doi, and S.F. Edwards, *The Theory of Polymer Dynamics* (Oxford University Press, 1986).
- [14] E. Irani, P. Chaudhuri, and C. Heussinger, *Phys. Rev. E* 94, 052608, (2016).
- [15] W. Zheng, H. Liu, and N. Xu, *Phys. Rev. E* 94, 062608 (2016).

Short-cut を動的に繋ぎ変える Small-world における 最終感染者サイズへの影響とその評価

猪毛尾 賢亮¹,内海 忍²,立川 雄一²,谷本 潤^{1,2,3}
 ¹九州大学 工学部 エネルギー科学科
 ²九州大学大学院 総合理工学府 総合理工学専攻
 ³九州大学院 総合理工学研究院 環境理工学部門

概要

Multi-Agent Simulation (MAS) を用いて感染症の拡大を評価していく場合,従来のシミュレーションでは,ある一つの固定されたネットワーク上で行うことが一般的である.しかしながら現実の世界を考えると,人々は毎日同じ人に会っているわけではなく,日によって関わる人間も様々である.それを実現するために,本稿では Small-World (SW) ネットワーク上で,一日ごとにshort-cut リンクを切り替えながら感染症の伝搬を評価した.その結果,固定 short-cut リンク SW上に比して,最終感染者サイズ,ピーク感染者サイズともに増加し,その差異は平均次数と short-cut 確率に依存することを明らかにした.また,その機構の詳細は,繋ぎ替えにより,感染拡大をもたらす I-S リンクがリフレッシュされるイベントによることを明らかにした.

Quantification of final epidemic size on a Small-world network with time-varying its short-cut links

Kensuke Ikeo¹, Shinobu Utsumi², Yuichi Tatsukawa², Jun Tanimoto^{1,2,3}

¹ Undergraduate School of Engineering, Kyushu University
 ² Interdisciplinary Graduate School of Engineering Sciences, Kyushu University
 ³ Faculty of Engineering Sciences, Kyushu University

Abstract

Multi Agent Simulation; MAS, applied for epidemic spreading on a complex human network, usually premises a time-constant underlying network, although a human physical contact complexly time-varies in daily basis as the reality. We analyze a disease spreading obeying to SIR process on Small-world (SW) network of which short-cut links daily change. Our MAS result reveals that the Final Epidemic Size; FES, and peak epidemic size increase by presuming such a daily dynamic SW vis-à-vis the conventional SW, which depends on both short-cut probability and average degree. Which is brought by the mechanism that the daily dynamic SW refreshes I-S links working as a trigger to spread a disease, which makes containment difficult in a time-evolutionary process.

1.緒言

現在世界で爆発的な感染拡大を見せている COVID-19. ワクチン開発が進み,日本では約7 割が接種を終え,感染も落ち着いてきた.だ が,飲食業界や旅行産業に既に甚大な被害が 及んでいる. 主な感染経路としては, 家庭内 や職場内などで生じる高密度な物理接触が媒 介するケースの発生が挙げられる. 加えて, 「自粛」や「非常事態宣言」である程度の社会的 介入制御ができたとしても完全には禁じ得な い遠方への移動が,遠隔地への飛び火感染を 惹起することが無視できない.

本論では Multi-Agent Simulation (以下 MAS) を SIR プロセスに適用し,複雑社会ネットワ ーク上での物理接触を模擬した解析により, この遠方への移動イベントによる感染動特性 への影響を評価する.次数分布の scale-free 性 と並んで人間社会システムの複雑ネットワー クの大きな特徴である small-world (SW) 性に 注目し,本論では 2 次元ラチスベースの SW を取り上げる.具体的には,ある short-cut 確 率のもとで生成した SW グラフを,1 日ごと にそのランダム short-cutを繋ぎ替えることで, 上記の現実世界における遠方への移動を模擬 する.この short-cut の繋ぎ替えが,感染者サ イズに及ぼす影響を系統的な数値実験により 考察する.

2.モデル

2.1 Small-world ネットワーク

2 次元ラチスを基盤に, Watts & Storgatz に よる WS-SW モデル[1]に従い, 平均次数, short-cut 確率を変えながら,粒子数 10⁴の SW を生成した.

2.2 感染症モデル

感染症伝搬におけるモデルは Kermack と McKendrick[2]による SIR モデルに依るとした. ここで S は感受性をもったエージェント, I は 感染し他にウイルスを移し得るエージェント, R は感染し回復したことで完全免疫を獲得し たエージェントである.季節性インフルエン ザに則って基本再生産数 $R_0 = 2.5$, I から R へ の遷移確率は $\gamma = 1/3$ [day⁻¹]とした. S から I への遷移確率βはそれぞれのリンクに対して β_{eq} [3]を定義する.

$$\beta_{\text{eq}} = \frac{R_0 \cdot \gamma}{\langle k \rangle} [\text{day}^{-1} \cdot \text{person}^{-1} \cdot \text{link}^{-1}]$$

2.3 時間の概念

MAS を用いる上で状態遷移を決める方法と

して Gillespie 法[4]を適用する. これによって 1 時間ステップごとに 1 人のエージェントが 確率的に状態遷移を行う. ここでエージェン トS_iの遷移確率はそのエージェントの隣人の 感染者数*NI(i)を*用いて, $p_i(t) = \beta \times NI(i)$ で 表され,エージェントI_iの遷移確率は $p_i(t) = \gamma$ で表されるので,遷移確率の総和を $\lambda(t)$ とす ると, $\lambda(t) = \sum_i p_i(t)$ となる. Gillespie 法にお ける時間は,感染の成長状況により不等間隔 となり,1時間ステップの時間変化 Δt は

$$\Delta t = \frac{-\ln\left(1-u\right)}{\lambda(t)}$$

となる. $u \ \text{to} \le u < 1$ の一様乱数である. Δ t を加算していくことで, 24 時間すなわち日 の切り替わりを検出する.

2.4 Dynamic Small-world

本研究では、short-cut 確率で規定される SW のランダム short-cut リンクを 1 日ごとに切 り替えるトポロジーを導入する.具体的には、 初めに各々のトポロジーに対して 100 種類の ネットワークを用意し、1日が経過する度に その中からランダムに次のネットワークを選 択しながら感染症を進めていった.本論では、 これを Dynamic Small-world と呼ぶことにす る. Fig.1 に Dynamic Small-world の特性を模 式的に示している. パネルは Gillespie 法によ り、あるノード(図の範囲にはない)が(例え ば) S から I に推移した状況前後、かつ、ちょ

Fig.1 ネットワーク切り替え前後の感染し得る経路の数の変化

うど1日の切れ目で, short-cut リンクが繋ぎ 替えられた状況前後を示している.中央のIノ ードは、上記の状態推移したノードではない、 ネットワーク上の他の場所のIノードを意味 する. このIノードの short-cut が3本リフレ ッシュされ、切り替え間には I (focal ノード) -R, I-S, I-R リンクであったものが, 夫々, I-S, I-R, I-S リンクになっている. I-R⇒I-S と I-R⇒I-S のリンク変化は、繋ぎ替えにより感染 拡大リスクを押し上げる効果, I-S⇒I-R は逆に 感染リスクを押し下げる効果をもたらす.本 論では、これを Dynamic Effect として、押し 上げプラス側+1,押し下げマイナス側-1とし てリンク数を数え上げて評価する. 再言する と、この Dynamic Effect は Gillespie 法上,1日 の切り替わり時にしか発生しない.また, Dynamic Effect は short-cut を繋ぎ替えない従 来の静的 SW ではゼロとなる(Fig.1 で示した 範囲ではノードの状態変化は発生しない;後 述 Fig.4 左パネル青プロット参照) から, この 指標は、移動により感染の遠方拡大リスクを 表意していることになる.

3.結果及び考察

Fig.2 は平均次数<k>と short-cut 確率 $p \ ext{complex}$ 化させながら遷移確率 β ,最終感染者サイズ (FES),ピーク感染者サイズを静的 SW (basic SW) と Dynamic SW とで比較している.最上 パネルには次数ごとに異なるが p への感度は 持たず,両 SW で同一の値となる β_{eq} を参考の ために示している.MAS の統計値はアンサン ブル平均 10⁴,既述の通りノード数は 10⁴であ る.初期感染者数 5 としてドメイン上にラン ダム配置したのちの SIR プロセスを Gillespie 法で追跡している.既報[3]同様,平均次数大 ほど,p 大ほど,FES もピーク感染サイズも大 きくなる.静的 SW と dynamic SW でこの傾 向自体は同様だが,特に低次数では後者の感 染拡大への脆弱性が見える.

Fig.3 は Fig.2 左右パネルの FES とピーク感染 者サイズの差画像である. 低次数ほど dynamic SW の FES, ピーク感染者サイズが大 きくなることが明らかである. また, p 大ほど 同様に dynamic SW の FES, ピーク感染者サイ ズが大きくなる. 但し, FES の次数 8 (数値実

Fig.2 MAS の結果. 左列は通常の Small-world. 右列は Dynamic Small-world. 上段は使用したβ の値. 中段は最終感染者サイズ(FES). 下段はピー ク感染者サイズ.

験上の最低次数)ではpがゼロに近い領域で 中程度のpより FES は大きくなっている.こ れは,静的 SW においては,このパラメータ 領域では,Disease Free (DF)もしくはそれに 近い状態(統計的にはある試行では感染相と なるが別の指向では DF となる等)となり得 るのに対して,dynamic SW ではランダムリン ク繋ぎ替えによりそれらが起き得ずに,p小 の領域にも感染状況悪化が顕れることで DF とはならず感染相となるからである.

Fig.4 Dynamic Effect(Dynamic Small-world に することによる影響). 左縦軸は Dynamic Effect, 右縦軸は I と R が全ノードに占める割合をとっ ており, 横軸は時間をとる. 上段は short-cut 確 率 0.05 で平均次数 48, 下段は short-cut 確率 0.5 で平均次数 8 についてプロットしている.

さて, Fig.4 は先述した Dynamic Effect を平 均次数 48, p=0.05 (上パネル),および平均次 数 8, p=0.5 (下パネル)の代表的 1 試行につ いて,その時系列を示した結果である.ただ し平均次数による影響を排除するために,そ れぞれ全リンク数で割って正規化してある. 図中のラインは I と R の時間発展を併示しお り,左パネルは静的 SW を比較のために示し ている.Dynamic SW の Dynamic Effect がプラ ス側に触れることが,感染を押し上げている

様子が看取できる.

4.結言

Multi Agent Simulation により, ランダム short-cut を 1 日ごとに切り替える Dynamic Small-world 上の SIR プロセスを解析した.従 来の静的 Small-world に対して, Dynamic SW は,現実社会における遠距離移動に依る影響 を模擬した系になっている.この繋ぎ替えの 効果を定量化するため, I-S リンクが日々リフ レッシュされることによって遠方への感染拡 大のトリガーになっていることを評価した Dynamic Effect を指標として定義し,低次数, short-cut 確率が大きい領域ほど,最終感染者 サイズ,ピーク感染者サイズが押し上げられ ることを明らかにした.

今後の課題としては、Dynamic Effect の定義 を足掛かりに、初期の short-cut 確率を与件と して、なるべく初期 short-cut 確率から低下さ せずに(社会活動を封じる異なく)、時間方向 に short-cut 確率をどのように低減制御すれば、 感染サイズを効率的に小さくできるのか、そ の最適制御問題を考察することが考えられる.

謝辞

本研究の一部は科研費(19KK0262, 20H02314,20K21062)による.また,本研究 は九州大学情報基盤研究開発センター研究用 計算機システムを利用した.記して謝意を表 する.

参考文献

- D. J. Watts, S. H. Strogatz,; Collective dynamics of 'Small-World' networks, *Nature*, **393(6684)**, 440–442, 1998.
- [2] Fu, F., Rosenbloom, D. I., Wang, L., Nowak, M. A.; Imitation dynamics of vaccination behaviour on social networks, *Proceedings of the Royal Society B*, **278**, 42–49, 2011.
- [3] 内海忍,谷本潤;SIRダイナミクスにおける感染率の定義の違いが最終感染者サイズに及ぼす影響,第26回交通流と自己駆動粒子系のシンポジウム,2020.
- [4] Gillespie, D. T. J.; Exact stochastic simulation of coupled chemical reactions, *Journal of physical chemistry*, 81(25), 2340–2361, 1977.

症候性感染者の隔離・無症候性感染者の存在・発症から隔離までの時間遅れが 感染症伝搬ダイナミクスに与える影響

内海 忍¹, 谷本 潤²

¹九州大学 大学院 総合理工学府 総合理工学専攻 ²九州大学院 総合理工学研究院 環境理工学部門

概要

感染症の伝搬ダイナミクスにおいて次の 3 つの要因-i)症候性感染者の隔離 ii)無症候性感染者 の存在 iii)発症から隔離に至るまでの時間遅れ-が及ぼす影響を, Multi Agent Simulation (MAS) により解析した. 1 人の Susceptible agent が感染した場合に無症候性となる確率, また, 症候性 であった場合に隔離が成功する確率を夫々定義し, 時間遅れについては隔離のプロセスを実行 する頻度の操作によって, その再現を試みた. 無症候率, 隔離成功率を変えながら, 感染の伝搬 ダイナミクスを比較したところ, 感染者の 6 割以上が無症候性となる場合は隔離の程度に依ら ず最終感染者サイズ等の特徴量が悪化する傾向が観察された. また, 高頻度の隔離プロセスの適 用により, 一部領域では感染症の封じ込めが期待される一方, 特に無症候率が高い領域では, 最 終感染者サイズは大して改善されないまま, 累計隔離感染者サイズのみが大幅に増加すること が判明した. 最後に理論式による結果を導出し, MAS 結果の示す傾向とよく一致することを確 認した.

Impact of Quarantine, Asymptomatic infected, and its Time delay on Disease spreading in Small-world Networks

Shinobu Utsumi^{*1}, Jun Tanimoto^{*2}

*1 Interdisciplinary Graduate School of Engineering Sciences, Kyushu University *2 Faculty of Engineering Sciences, Kyushu University

Abstract

By means of Multi-Agent Simulations; MAS, we explored how each of the 3 significant factors controlling a pandemic (i.e., quarantining rate, asymptomatic rate and time-delay of monitoring infected individuals) quantitatively influencing on a disease breakout. We presumed Small-world graph as an underlying networks. To take into account above 3 factors, our model defines two probabilities; asymptomatic rate, quarantining rate. The results indicates that the case presuming asymptomatic-infectious being more than 60% goes serious situations irrespective to quarantining rate. Furthermore, even though a higher quarantine campaign is adopted, some parameter region significantly improved by reaching to disease-free though, other region cannot improve Final Epidemic Size, which brings an ironical situation where disease up-surges very much besides huge fraction of quarantined-infected people. Finally, we validated our MAS results by comparing with the theoretical results coming from quasi-analytical approach (Ordinary Differential Equations, ODE).

1.緒言

感染症の封じ込めには、ワクチンや抗ウイル ス剤をはじめとする医療対処策や、手指消毒・ マスクの着用・social distancing 等の感染予防 策などが挙げられる[1]. しかし、未知の感染 症については、伝搬初期にワクチンが開発途 中である可能性が高い為、特に感染初期段階 では、前述の感染予防策に加え、感染者を迅速 に検知し適切に隔離する、感染経路予防策が 封じ込めの可否に大きく影響する[2]. ここで、感染者の検知を困難にする要因の一 つに無症候性感染者の存在が挙げられる.無 症候性感染者とは、感染状態(infected)であ り、且つ、他人に感染させる能力を持つ (infectious)が、発熱等の兆候がなく回復する までに自覚症状のない感染者のことを指す. 今次の新型コロナウイルス感染症についても、 無症候性感染者がキャリアとなって感染拡大 が起きた.加えて、当局に依る隔離実行にあた っては、PCR 検査までの時間や再検査、医療機 関の受け入れ体制などによって発症から隔離 までの過程で時間遅れが生じ、その間は感染 拡大のリスクを伴う.

本研究では,現実的隔離プロセスを想定し, 上記の検査遅れ,更には隔離要請に従わない エージェントの影響を加味した MAS モデルを 構築することを最終目的とし,本論ではその 基本モデルを MAS 上に構築,その特性を平均 場近似の ODE モデルと比較した結果を報告す る.

2.モデル

本研究で扱うモデルの模式図を Fig.1 に示す. これは Kermack & McKendrick[3]による SIR (Susceptible-Infectious-Recovered) model に 次の3点の拡張を加えたものである.まず1 点目とし, 無症候性感染者の影響を考慮する 為に、感染性エージェントIに対して、確率aで 2 つのコンパートメント-無症候性感染エー ジェント (Asymptomatic-Infected; *I^A*),及び症 候性感染エージェント (Symptomatic-Infected; I^{s}) - へ分岐をもたせる. ここで、 aとは、 1人 の感受性エージェントSが感染した場合に無 症候性となる確率 (asymptomatic rate; a) と定 義する.2点目は隔離を考慮する為に,症候性 感染エージェントI^sに対して, 確率qで隔離感 染エージェントのコンパートメント (Quarantined-Infected; Q) への推移を考慮す る. ここで, qとは, 1 人の症候性感染者が隔 離の機会を得たときに、それが成功する確率 (quarantining rate; q) と定義する. 3 点目は 感染から隔離までの時間遅れを考慮する.こ の際, *I^s*から Q への状態遷移(Fig.1 に破線で 示す部分)を連続時間系の時間進行から独立 させ、任意の離散時間間隔だけイベントが生 じる枠組みを導入した. MAS の実装上は, 前 回の隔離の機会から Gillespie アルゴリズム上

Fig. 1 モデルの模式図. 各コンパートメン トは夫々, S; Susceptible, I^A ; Asymptomatic-Infected, I^S ; Symptomatic-Infected, Q; Quarantined-Infected, R; Recovered

の時間離散幅 Δt [day]を積算していき,それが ある時刻tで任意の時間間隔 τ (例えば,1日に 4 回の隔離プロセスを実行するなら, τ = 0.25[day])を満たした時のみ, $I^{S} \rightarrow Q$ への状 態遷移を考慮する. MAS による数値実験にお いて,その他の諸設定については[4]を踏襲す る.すなわち,基本再生産数は季節性インフル エンザ相当の感染力を想定した R_0 =2.5 を,回 復率は γ =1/3[day¹]を,感染率は次式で定義さ れる相当感染率(以下, β_{eo})を用いる.

$$\beta_{\rm eq} = \frac{R_0 \cdot \gamma}{}$$

これは、[3]に代表されるような連立常微分方 程式 (以下, ODE) で付与する一人当たりの感 染率 $\beta = R_0 \cdot \gamma \varepsilon$, さらにリンク1本当たりに 換算した, [day⁻¹person⁻¹link⁻¹]を物理単位と する感染率を意味する.また、基盤グラフには、 Watts と Strogatz による WS-SW モデル[5]を 想定する. 但し, ここで扱う Small-world ネッ トワークは short-cut 確率p = 0において二次 元格子グラフを再現する. [4]に基づき,本研 究では数ある short-cut 確率p (0 から 1 まで 0.01 刻みで実験), 平均次数(k) (8 から 64 ま で8刻みで実験)の組み合わせの中から特に 特徴的な結果を示した 2 組の Small-world ネ ットワーク ($\langle k \rangle \approx 16$, p = 0.15と, $\langle k \rangle \approx 56$, p = 0.80)に対して報告する. 感染開始時はシ ステムサイズN=10⁴で構成される上記の空間 構造内に、初期感染者数 10=5 をランダムに配 置し,その後は Gillespie アルゴリズム[6]に基 づいて伝搬が進行する. 確率過程を含む数値 計算の為、ある条件設定に対して 100 試行の アンサンブル平均をもって 1 つの計算結果と し、結果の統計的頑健性を保証する.なお、シ ステムサイズの設定に際しても[4]の結果を踏 まえ, N=10⁴で系の有限性の影響が以下で報じ る結果に有意でなくなることを確認した.本 モデルは、一度隔離に失敗したI^Sエージェント も再度隔離の機会が巡ってくれば隔離される 可能性がある状況を模擬し、回復エージェン ト R については、二度目の感染が起きない完 全免疫を仮定する.以上を ODE 系で表現する ならば、各コンパートメントの時間推移は次 式で記述される

$$\begin{split} \vec{I} & \vec{S} = -\beta S \{ I^A + (I^s - \delta(t) \cdot qI^S) \} \\ \vec{I}^A &= \beta S \{ I^A + (I^s - \delta(t) \cdot qI^S) \} \cdot a - \gamma I^A \\ \vec{I}^S &= \beta S \{ I^A + (I^s - \delta(t) \cdot qI^S) \} \cdot (1 - a) \\ &- \gamma (I^s - \delta(t) \cdot qI^S) \end{cases} (1) \\ \vec{Q} &= -\gamma (Q + \delta(t) \cdot qI^S) \\ \vec{R} &= \gamma I^A + \gamma (I^S - \delta(t) \cdot qI^S) \\ &+ \gamma (Q + \delta(t) \cdot qI^S) \end{split}$$

ここで β [day⁻¹person⁻¹]は1日あたり1人あ たりの感染率であり、MAS 上で付与する相当 感染率の定義とは異なる. $\delta(t)$ は、時刻tの値 に応じて0、1を返す関数であり、次式で定義 する.

$$\delta(t) = \begin{bmatrix} \text{if } t \mod \tau = 0 & ; 1\\ \text{otherwise} & ; 0 \end{bmatrix}$$
(2)

3. 結果及び考察

まずはトポロジーを固定して,3要因による 一般的な傾向から見ていこう. 隔離プロセス の実行頻度が異なる 2 つの設定に対して, asymptomatic rate, quarantining rate を変えな がら、感染症伝搬ダイナミクスにおける 4 つ の特徴量を Fig.2 に示す. なお, 数値は全てド メインサイズで規格化している.左カラム最 上段,最終感染者サイズ(以下,FES)のパネ ルを見ると左上に濃いブルーの領域(FES がほ ぼ0;これは封じ込め達成を意味する)が存在 する.よって、左カラムのその他3パネルでも 各パネル左上領域で濃青を示す.が、下段2つ、 累計感染者サイズとピーク隔離感染者サイズ では、さらに各パネル右下領域に濃青が存在 する.FESを見れば判るように、この領域では 感染が蔓延している. つまり, 感染者の8割以 上が無症候性となる状況では、もはや隔離す らままならない,大感染により「処置なし」の 状態となって、ピーク時、累積ともに隔離者数 は僅少となる. では, 時間遅れを小さくした場 合はどうか. 中央カラムには 4 倍の頻度で隔 離のプロセスを実行した場合の結果を示した. 左カラムと比べ disease-free の領域が低 quarantining rate の領域に対して拡がり、上記 の「処置なし」領域も小さくなっている. が, 依然として感染者の 6 割以上が無症候性とな る領域からは quarantining rate の程度に依ら

Fig. 2 MAS による結果. 上段から順に, 最終感染者サイズ, ピーク感染者サイズ, 累計感染者サイズ, ピーク隔離感染者サイズ. 左カラムは1日1回の隔離機会頻度であり, 中央カラムは1日4回. 右カラムは中央カラムと左カラムの差画像. ネットワークは全て $\langle k \rangle \approx 16$, p = 0.15, $N = 10^4$ の Small-world.

ず FES は悪化している. つまり, asymptomatic rate が 0.6 を超える領域から, 隔離の効果が急 激に低下する.より明確に時間遅れによる影 響を考察するため,右カラムに両者の差画像 を表示した. つまりこの差画像では, 高頻度の 隔離プロセスの適用により、各特性値が減少 するか (青) 増加するか (赤) を示している. 3段目,累計隔離感染者サイズでは赤色の領域 が目立つが、これは高頻度の隔離プロセスの 実行によって、多数の症候性感染者が隔離さ れるからである.対して、同じパネルで濃青の 領域が存在するのは、左のパネルの比較から 明らかなように、高頻度の隔離プロセスによ り、このパラメータ領域では disease-free が達 成され、累計感染者自体が大幅に減少するか らである. ここで, 右カラム累計隔離感染者サ イズ差画像中に示した太緑破線は±0 境界を 示している.以下.これを1段目 FES 差画像 に転写していた結果に注目して考察する.ま ず、破線より上側の領域は高頻度の隔離プロ セス適用により感染サイズの抑え込みが可能 となる(ほぼ封じ込め可能)パラメータ域を意 味し、結果として FES も累計隔離感染者サイ ズも大幅な減少を見込める. 換言すれば, 高頻 度の隔離方策が意味のある領域である.一方

で,破線下側の領域では FES は減少するが感 染封じ込めは出来ず,結局,累計隔離感染者サ イズは増加してしまう.換言すると,無症候率 が大きくなると,高頻度の隔離方策は,確かに FES の減少は見込めるが完封には至らず,却っ て大きな累計隔離感染者数となる領域である. 隔離に要するコスト,検査を高頻度で供給す るコストと疾病コストを総体で考えたとき, 闇雲に検査強度を上げることに慎重を期すべ き領域であることを示唆する.

最後に ODE を数値的に求解した結果との比 較を行う. Fig.3 に 2 通りの Small-world の結 果と併せて ODE 結果を表した. 全体的な 2 軸 パラメータに対する感度の傾向は MAS, ODEで よく一致していることが確認できる. MAS の 両ケースを比較すると, 高平均次数, 高 shortcut 確率の Small-world で, 当然, 感染状況悪 化となるが, ODE 結果はそれよりも悪い側の 結果となる. ODE では well-mixed かつ無限集 団を仮定した平均場近似を適用しているから, これを平均次数 $\langle k \rangle \approx \infty$ のネットワークと見做 せば, MAS の結果に対照して妥当な結果とな っていると考える.

4.結言

感染症の伝搬ダイナミクスにおける、隔離・ 無症候性感染者・発症から隔離までの時間遅 れの影響を, Multi Agent Simulation により解 析した.1人の Susceptible agent が感染した場 合に無症候性となる確率と、症候性であった 場合に隔離が成功する確率とを変えながら, 感染の伝搬ダイナミクスを比較したところ, 感染者の 6 割以上が無症候性となる場合は隔 離の効果が急激に低下する傾向が観察された. また高頻度の隔離プロセスの適用によって、 一部の領域では感染症の封じ込めが期待され る一方、最終感染者サイズは大して改善され ないまま,累計隔離感染者サイズが大幅に増 加する領域の存在が判明した. これは、ただ単 純に隔離方策を可能な限り実行することが常 に社会的最適とは限らないことを示唆してい る. 最後に ODE による結果と比較し, 両アプ ローチの妥当性を確認した.

緒言に述べたように、本研究では最終的には エージェントが「隔離破り」をする影響を計量 していく.その際、隔離要請されたエージェン トがある確率でそれを無視する場合、全ての 隔離要請されたエージェントがリンクをある 確率で保持する(部分的に隔離要請に従わな い)場合とで、系全体のダイナミクスに付与す る影響を考察する予定である.

Fig. 3 MAS と ODE による結果. 左・中央カラムは MAS による結果. 右カラムは理論式による導出. カラ ム毎のパネルのセットは Fig.2 と同様. なお隔離機会 の頻度は1日4回.

謝辞

本研究の一部は科研費(19KK0262, 20H02314, 20K21062)による.また,本研究は九州大学情報基盤研究開発センター研究用計算機システムを利用した.記して謝意を表する.

参考文献

- [1] Alam, M., Kabir, K. M. A., Tanimoto, J. Based on mathematical epidemiology and evolutionary game theory, which is more effective: quarantine or isolation policy?, *J. Stat. Mech. Theory Exp.*, **2020(3)**, 033502, 2020,
- [2] C. Castillo-Chavez,; Mathematical Models of Isolation and Quarantine, *JAMA J. Am. Med. Assoc.*, **290(21)**, 2876–2877, 2003
- [3] A. G. Kermack, W. O., McKendrick,; A contribution to the mathematical theory of epidemics, Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character, 115(772), 700–721, 1927,
- [4] 内海忍,谷本潤;SIRダイナミクスにおける 感染率の定義の違いが最終感染者サイズに 及ぼす影響,第26回交通流と自己駆動粒子 系のシンポジウム,2020.
- [5] D. J. Watts, S. H. Strogatz,; Collective dynamics of 'small-world' networks, *Nature*, 393(6684), 440–442, 1998
- [6] Gillespie, D. T.; Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81(25), 2340–2361,1977

細胞の相互誘導での運動持続性への界面効果

松下勝義, 鎌本直也, 須藤麻希, 藤本仰一

阪大院理 生物

概要

我々は界面張力の相互誘導を行うモデル細胞の集団運動の持続性への効果を細胞のクラスターに ついて調べた.そのモデル細胞は比較的小さい界面張力下では持続的ランダムウォークを示した. 対照的に,大きな張力ではその持続性は失われ細胞の集団回転運動が現れた.

Interface Effect on Persistence of Cellular Mutually Guiding

Katsuyoshi Matsushita, Naoya Kamamoto, Maki Sudo, and Koichi Fujimoto

Department of Biological Science, Graduate School of Science, Osaka University.

Abstract

In this study, we investigated the effects of interface tension on the persistence time of the collective movement of mutual guiding in a model cell cluster. The model cells based on the cellular Potts model reduce the persistence time of the collective movement as interface tension decreases. Finally, collective cell rotation appears for large values of interface tension.

1 Introduction

Eukaryotic cells collectively move through biological processes [1-3]. During these movements, cells guide their motion through their cellular contacts, such as leader guiding [4] and mutual guiding [5] mechanisms. These guidings lead to an order in the directions of motion. In contrast to the leader guiding, our simulation for mutual guiding showed that confluent cells in the periodic boundary condition exhibit long persistent time beyond an observation time scale in movements [5]. The result does not directly explain natural collective movements because the interface of the leading edges shown in Fig. 1(a) may reduce the persistence time. In natural systems, cells form finite-size clusters accompanying the interface. Thus, the movement reflects the interface of the leading edges, which affects the guiding efficiency. For instance, leader guiding promotes interface fingering, which affects the movement [6, 7].

We consider two mutually guiding cells on the leading edge of the cluster to intuitively estimate this effect of the interface tension. On the interface, we assume that the two cells, 1 and 2, contact each other and they have a receptor on the leading edge and ligand on the membrane, as shown in Fig. 1(b). The leading edge of cell 2 extends along the surface of cell 1 by exerting tension when the receptor recognizes the ligand. During the movement due to the guiding, the interface tension $\gamma_{\rm E}$ and the intercellular tension $\gamma_{\rm C}$ also affect the motion of the leading edge as shown in Fig. 1(c) through Young's

law [8]. Assuming that the friction i proportional to the movement velocity v, it follows that

$$v \propto 2 \left(\delta q + \gamma_E\right) \cos \theta - \gamma_C,$$
 (1)

where δq is the guiding tension owing to mutual guiding [5, 9]. In this equation, we count both the tensions from cell 2 to cell 1 and cell 1 to cell 2. δ is the tension per receptor, q is the receptor concentration, and θ is the contact angle defined in the figure. This equation estimates that the interface tension affects the mutual guiding. This effect becomes complex in persistence because q is an active degree of freedom for cells with persistence [4, 5]. To elucidate this effect beyond this estimation, such as the dependence of the persistence time on $\gamma_{\rm E}$, we should simulate the collective movement of the mutual guiding.

In this study, we theoretically investigate the effect of interface tension on the persistence time of the collective movement of a cell cluster. We used the cellular Potts model [10] by incorporating mutual guiding [5]. We observed a short persistent time [11, 12] for relatively small values of γ_E , in contrast to the long persistence time in the previous investigation. Additionally, we observed that the persistence of movement disappears with the motion transition to a collective rotation for large values of the interface tension.

2 Model

In this study, we focused on the surface tension of a cell cluster. One of the well-describable models for surface tension is the cellular Potts model, which reproduces cell sorting [13, 14] and adhesioninducing developmental processes [15–18]. The model can reproduce the mutual guiding using cellcell adhesion [5, 19]. This model considers the Potts state $m(\mathbf{r})$ at site \mathbf{r} on a square lattice with linear size L and periodic boundary conditions. $m(\mathbf{r})$ takes 0 for the case without cells. In contrast, $m(\mathbf{r})$ takes a number in 1, 2 ... N, corresponding to the cell index. Here, N is the number of cells, and it is constant in this simulation for simplicity. Each domain of Potts state m expresses the cell shape for the mth cell. In this interpretation, the Monte Carlo simulation of this configuration expresses the dynamics of the cells.

The Monte Carlo simulation is based on the Boltzmann weight $w = \exp(-\beta \mathcal{H})$, where β is a parameter of cell motility. \mathcal{H} is the Hamiltonian and it consists of three terms

$$\mathcal{H} = \mathcal{H}_{\rm S} + \mathcal{H}_{\rm V} + \mathcal{H}_{\rm G}.$$
 (2)

The first term denotes the surface tension [10]

$$\mathcal{H}_{\rm S} = \gamma_{\rm C} \sum_{\boldsymbol{rr'}} \eta_{m(\boldsymbol{r})m(\boldsymbol{r'})} \eta_{0m(\boldsymbol{r'})} \eta_{m(\boldsymbol{r})0} + \gamma_{\rm E} \sum_{\boldsymbol{rr'}} \eta_{m(\boldsymbol{r})m(\boldsymbol{r'})} \left[\delta_{0m(\boldsymbol{r'})} + \delta_{m(\boldsymbol{r})0} \right].$$
(3)

The summations of rr' represent those over the nearest and next-nearest sites. The same symbol hereinafter is used in the same manner. $\gamma_{\rm C}$ and $\gamma_{\rm E}$ are the surface tensions. η_{nm} denotes $1 - \delta_{nm}$, where δ_{nm} is the Kronecker's δ . Herein, we focused on the γ_E -dependence of movement persistence.

The second term in Eq. (2) is the volume constraint,

$$\mathcal{H}_{\rm V} = \kappa \sum_{m} (1 - \frac{\sum_{\boldsymbol{r}} \delta_{mm(\boldsymbol{r})}}{A})^2, \qquad (4)$$

where κ and A denote the volume stiffness and the reference area of cells, respectively.

The third term in Eq. (2) expresses the mutual guiding

$$\mathcal{H}_{\rm G} = -\delta \sum_{\boldsymbol{rr'}} \eta_{m(\boldsymbol{r})m(\boldsymbol{r'})} \eta_{0m(\boldsymbol{r'})} \eta_{m(\boldsymbol{r})0} \\ \times \left[q_{\boldsymbol{r}}^{m(\boldsymbol{r})} + q_{\boldsymbol{r'}}^{m(\boldsymbol{r'})} \right].$$
(5)

Here, the receptor concentration is given by $q_r^m = 1 + p_{m(r)} \cdot e_{m(r)}$, where p_m is a unit vector denoting the density gradient of receptor molecules, $e_m(r)$ is a unit vector from \mathbf{R}_m to \mathbf{r} and \mathbf{R}_m is the center of the *m*th cell. Additionally, the sensing occurs in the direction of p_m , which represents the leading edge of cells. In this term, the receptor molecule reduces the surface tension by sensing with contacting cells. As a result, it aligns the moving direction

Fig. 1: (a) Cell cluster. (b) and (c) show the contact region of the leading edge between cells 1 and 2. (b) Motion guiding by cell 1 for cell 2 with their receptors and ligands. δq is the guiding tension, and p_m is the direction of the receptor concentration gradient of the *m*th cell. (c) Interface tensions. $\gamma_{\rm C}$ and $\gamma_{\rm E}$ denote the tension between cells and between cells and unoccupied space, respectively.

of the cell in the direction of the sensed cells. The derivation of this equation is based on [20, 21].

Here, we consider that sensing occurs at the leading edge of the cells. To express this situation, we assume that p_m obeys the equation of motion [22],

$$\frac{d\boldsymbol{p}_m}{dt} = \frac{1}{\tau} \left[\hat{I} - \boldsymbol{p}_m \otimes \boldsymbol{p}_m \right] \cdot \frac{d\boldsymbol{R}_m}{dt}, \tag{6}$$

where t, \otimes, \hat{I} , and τ denote the time, the tensor product, the unit tensor, and the time scale ratio of $d\mathbf{R}_m/dt$ to $d\mathbf{p}_m/dt$, respectively. The ratio determines the persistence of motion.

Based on \mathcal{H} , we consider the following conventional Monte Carlo simulations [10]: A single Monte Carlo step (MCS) consists of $16L^2$ copy trials, and it is the unit of time. In the copy trial, the state at the randomly chosen site, \mathbf{r} , changes to the state of a randomly chosen neighboring site. The copy is accepted with the Metropolis probability, min[1, w'/w], where w' is the Boltzmann weight with the state copy. \mathbf{p}_m and \mathbf{R}_m are constant in these copies and they change once after the single Monte Carlo step, by according to Eq. (6) and $\mathbf{R}_m = \sum_{\mathbf{r}} \mathbf{r} \delta_{mm(\mathbf{r})} / \sum_{\mathbf{r}} \delta_{mm(\mathbf{r})}$, respectively. The Euler method is used with a time difference of $1/\tau = 0.2$.

For the examination, we set N = 64, A = 64, κ

Fig. 2: (a) MSD as a function of t with γ_E sweeping. (b) Snapshot of cell configuration for $\gamma_E = 2.0$. (c) Snapshot of cell configuration for $\gamma_E = 7.0$. The black domain and other colored domains represent the unoccupied space and cells. The arrows from the center of the domains represent the p_m for each cell.

= 64^2 , $\tau = 5.0$, $\delta = 0.5$ and $\beta = 0.2$ as empirically known parameters to observe the collective movement. We consider $\gamma_{\rm C} = 2.5$ to choose the transition point between the dispersing state of cells and the aggregating state around the range of $\gamma_{\rm E}$ from 1.0 to 2.0. Here, the dispersing state is the state where the cells do not form contacts and separately take an individual random walk. To investigate the effect of interface tension, we consider γ_E from 1.0 to 8.0 and observe the collective motion.

3 Results

To investigate the persistence time of the collective cell movement, we calculated the mean square displacement of the cluster as a function of MCS t,

$$\mathrm{MSD}(t) = \left\langle \left[\int_{t_i}^{t+t_i} dt' \frac{1}{N} \sum \boldsymbol{d}_m(t') \right]^2 \right\rangle. \quad (7)$$

Here, we relax the state during t_0 MCS and then calculate MSD from $t = t_i$ to $t = t_f$. We take $t_i =$ 10^4 MCS and $t_f = 5 \times 10^4$ MCS. d_m is the displacement of the *m*th cell for 1 MCS. The angle bracket $\langle \dots \rangle$ represents the average of the eight trajectories. The MSDs for various $\gamma_{\rm E}$ values are plotted in Fig. 2(a), where the diameter of the cells, $2\sqrt{A/\pi}$, is unity. At $\gamma_{\rm E} = 1.0$, the cells were in a dispersing state. In this case, the MSD is proportional to the number of MCS t in the data. This behavior reflects individual random walks of cells.

For $\gamma_{\rm E} \geq 2.0$, the cells take an aggregating state. At $\gamma_{\rm E} = 2.0$, MSD behaves in the superdiffusive motion like a ballistic motion with MSD $\simeq t^2$ up to $t \sim 10^3$ MCS and then crossover to a random walk as MSD $\sim t$. The ballistic motion in a short time originates from the memory effect in Eq. (6) [5]. This behavior is the same up to $\gamma_E = 6.0$. For these data, the long persistence time previously observed is absent. This result indicates that the interface of the leading edges reduces the persistence time. A distinctive observation is that the time scale of the superdiffusive motion steadily decreased with γ_E from 6.0. Additionally, a subdiffusive plateau was observed in MSD for $\gamma_E \simeq 7.0$ in an intermediate time scale longer than that of the ballistic motion, like glassy liquid systems [23]. For $\gamma_E > 7.0$, the subdiffusive plateau also appears. This result indicates that a large interface tension suppresses the persistence time.

To elucidate this suppression, snapshots for $\gamma_E =$ 2.0 and $\gamma_E = 7.0$ are shown in Fig. 2(b) and (c), respectively. The configurations of the arrows of p_m largely differ in these snapshots. For $\gamma_E = 2.0, p_m$ exhibits an ordered state and drives collective cell movement. In contrast, p_m for $\gamma_E = 7.0$ forms a vortex and drives a rotational motion similar to that of *Dictyostelium discoideum* in the mound stage [24]. The rotation direction exhibits persistence for large γ_E in our observation time and merely changes at $\gamma_E = 7.0$ through stochastic transitions between a translational motion to the rotation, which is the origin of sudden changes in MSD in Fig. 2(a) The emergence of this rotational motion is an origin that suppresse the persistence of the collective cell movement.

4 Summary and Discussions

We investigated the effect of the interface tension of the leading edges of cell clusters on the persistence time of collective movement. The interface tension reduces the long persistence time previously that was observed even for relatively small interface tensions [5]. In contrast, the large interface tension inhibits the persistence. This suppression originates from the emergence of rotational motion.

Additionally, long-timescale persistence appears for excluding volume-interacting cells with periodic boundary and confluent conditions [25–27]. Therefore, the corresponding systems with the interface may change the results. However, these works assume the repulsion in contrast to the case with mutual guiding; hence cannot realize the cell cluster. Therefore, another method that incorporates an interface is necessary for the examination.

Finally, we consider the emergence of rotational motion for a large interface tension. In our simulation, a large interface tension resulted in a large θ . Here, large θ s' values of near $\pi/2$ correspond to the smooth interface shown in Fig. 2(c). The smooth interface aligns the force from tensions γ_E and δq in the tangential direction at the interface. Therefore, the guiding of δq induces torque on the interface around the center of the cell cluster. As a result, it leads to collective rotation.

Notably, this mechanism of rotation differs from those of already known cell rotations, which originate from chemotaxis [28, 29], flocking interactions [30], anisotropic apical constriction [31], contact following [32, 33], and minority control effect of leader cells [34]. The mechanism through mutual guiding is one of the collective rotations unknown so far in the sense that cells make good use of the surface tension.

We thank S. Yabunaka, H. Kuwayama, H. Hashimura, M. Sawada, and K. Sawamoto for providing various relative knowledge. We also thank M. Kikuchi and H. Yoshino for their support with the research resource. This work was supported by JSPS KAKENHI (Grant Number 19K03770) and by AMED (Grant Number JP19gm1210007).

References

- [1] C. J. Weijer, J. Cell Sci. **122**, 3215 (2015).
- [2] P. Friedl and D. Gilmour, Nat. Rev. Mol. Cell Biol. 10, 445 (2009).
- [3] P. Rørth, Annu. Rev. Cell Dev. Biol. 25, 407 (2009).
- [4] A. J. Kabla, J. R. Soc. Interface 9, 3268 (2012).
- [5] K. Matsushita, Phys. Rev. E 97, 042413 (2018).
- [6] M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, and P. Silberzan, Proc. Natl. Acad. Sci. USA 104, 15988 (2007).
- [7] S. Mark, R. Shlomovitz, N. S. Gov, M. Poujade, E. Grasland-Mongrain, and P. Silberzan, Biophys. J. (2010).
- [8] P.-G. de Gennes, F. Brochard-Wyart, and D. Quere, *Capillarity and Wetting Phenomena:* Drops, Bubbles, Pearls, Waves (Springer, 2004).
- [9] S. Okuda and K. Sato, arXiv:2104.13059 (2021).
- [10] F. Graner and J. A. Glazier, Phys. Rev. Lett. 69, 2013 (1992).
- [11] L. Li, S. F. Nørrelykke, and E. C. Cox, PLoS One 3, e2093 (2008).
- [12] H. Takagi, M. J. Sato, T. Yanagida, and M. Ueda, PLoS One 3, e2648 (2008).

- [13] F. Graner, J. Theor. Biol. 164, 455 (1993).
- [14] J. A. Glazier and F. Graner, Phys. Rev. E 47, 2128 (1993).
- [15] A. F. M. Marée and P. Hogeweg, Proc. Natl. Am. Sci. USA 98, 3879 (2001).
- [16] A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak, Single-Cell-Based Models in Biology and Medicine (Birkhauser Verlag AG, Basel, 2007).
- [17] M. Scianna and L. Preziosi, Cellular Potts Model (CRC Press, UK, 2013).
- [18] T. Hirashima, E. G. Rens, and R. M. H. Merks, Dev. Growth Differ. 59, 329 (2017).
- [19] K. Matsushita, Phys. Rev. E. 95, 032415 (2017).
- [20] K. Matsushita, Phys. Rev. E 101, 052410 (2020).
- [21] K. Matsushita, H. Hashimura, H. Kuwayama, and K. Fujimoto, arxiv:2110.00235 (2021).
- [22] B. Szabó, G. J. Szollosi, B. Gonci, Z. Juranyi, D. Selmeczi, and T. Vicsek, Phys. Rev. E 74, 061908 (2006).
- [23] R. Yamamoto and A. Onuki, Phys. Rev. E 58, 3515 (1998).
- [24] J. T. Bonner, The Social Amoebae: The Biology of Cellular Slime Molds (Princeton University Press, Princeton, 2009).
- [25] K. Matsushita, K. Horibe, N. Kamamoto, and K. Fujimoto, J. Phys. Soc. Jpn. 88, 103801 (2019).
- [26] K. Matsushita, K. Horibe, N. Kamamoto, S. Yabunaka, and K. Fujimoto, Proc. Sympo. Traffic Flow Self-driven Particles 25, 21 (2019).
- [27] K. Matsushita, S. Yabunaka, and K. Fujimoto, J. Phys. Soc. Jpn. **90**, 054801 (2020).
- [28] F. Siegert and C. J. Weijer, Curr. Biol. 5, 937.
- [29] B. Vasiev, F. Siegert, and C. J. Weller II, J. Theor. Biol. 184, 441 (1997).
- [30] W.-J. Rappel, A. Nicol, A. Sarkissian, H. Levine, and W. F. Loomis, Phys. Rev. Lett. 83, 1247 (1999).
- [31] K. Sato, T. Hiraiwa, E. Maekawa, A. Isomura, T. Shibata, and E. Kuranaga, Nat. Commun. 6, 10074 (2015).
- [32] T. Umeda and K. Inouye, J. Theor. Biol. 219, 301 (2002).
- [33] T. Hiraiwa, Phys. Rev. Lett. **125**, 268104 (2020).
- [34] K. Matsushita, S. Yabunaka, H. Hashimura, H. Kuwayama, and K. Fujimoto, Proc. Sympo. Traffic Flow Self-Driven Parti. 26, 38 (2020). E-mail: kmatsu@bio.sci.osaka-u.ac.jp

Erratum:細胞の相互誘導での運動持続性への界面効果

松下勝義,鎌本直也,須藤麻希,藤本仰一

阪大院理 生物

Erratum: Interface Effect on Persistence of Cellular Mutually Guiding

Katsuyoshi Matsushita, Naoya Kamamoto, Maki Sudo, and Koichi Fujimoto

Department of Biological Science, Graduate School of Science, Osaka University.

In the paper[1], equation (1) and Fig. 1 are inconsistent with Eq. (5). Because Eq. (5) is correct as the mutual guiding [2, 3], Equation (1) and symbols in Fig. (1) should change as listed in Table 1. The paper is based only on Eq. (5). Hence, the results and conclusions in the paper are correct.

Table 1: lists of corrections

	Error	Correction
Eq. (1)	$v \propto 2 \left(\gamma_E + \delta q\right) \cos \theta - \gamma_C$	$v \propto 2\gamma_E \cos\theta - (\gamma_C - 2\delta q)$
In Fig. (1)	$\gamma_E + \delta q$	γ_E
In Fig. (1)	γ_C	$\gamma_C - 2\delta q$

References

- K. Matsushita, N. Kamamoto, M. Sudo, and K. Fujimoto, Proceedings of the Symposium on Traffic Flow and Self-Driven Particles 27, 23 (2021).
- [2] K. Matsushita, Phys. Rev. E 97, 042413 (2018).
- [3] K. Matsushita, Phys. Rev. E 101, 052410 (2020).

E-mail: kmatsu@bio.sci.osaka-u.ac.jp
体内のウイルス進化を組み込んだ個体群感染症モデルの解析

立川 雄一¹, 谷本 潤^{1,2}

¹九州大学 大学院総合理工学府 環境エネルギー工学専攻 ²九州大学 総合理工学研究院 環境理工学部門

概要

感染者の体内ウイルス量に応じて感染者が他者を罹患させる確率(β)が変動するネスティング型の感染症モデルを構築し, Multi Agent Simulation による数値解析を行った.その結果,時間変動する β の影響で感染が拡大する/しないの2つの均衡点が観察された.また,感染期間中の β の積分値を一定に拘束し, β の時間推移を様々変化させたところ,ピークを持たず低値一定の β とする場合に感染が最も拡大することがわかった.

Analysis on a population-based epidemic model incorporating viral dynamics in a human body

Yuichi Tatsukawa¹, Jun Tanimoto^{1,2}

¹ Interdisciplinary Graduate School of Engineering Sciences, Kyushu University ² Faculty of Engineering Sciences, Kyushu University

Abstract

We establish a nested epidemic model in which an infectiousness (β) of infected individual is timevarying depending on the viral load in a human body, and conduct numerical analysis based on multi agent simulation. As a result, two equilibrium points are observed by the influence of time varying infectiousness: disease spreading phase, phase of disease going to extinction. Additionally, to optimize time-evolution form of β during infected period with preserving time-integral β so as to maximize disease spreading, it turns out that time-flat β having none of keen peak is best.

1.緒言

本稿では、個々の粒子を介して感染が伝搬 する様相について論ずる.自己の状態が周囲 の粒子に影響を受け決定されるというのは、 本研究会のテーマである自己駆動粒子に準え ることができる.

昨今の COVID-19 による世界的感染拡大に 伴い,感染拡大メカニズムの解明や有効な封 じ込め政策を検討する研究が益々盛んに行わ れている.感染期間が日単位の感染症(例え ば,インフルエンザ)を対象とした研究にお いては,個体間での SEIR, SIR 等の数理疫学 モデル(以下,従来モデル)が用いられ,感染 者が他者を罹患させる確率(以下,感染率:β) は時間変動の無い固定値で与えられている. (無論, HIV 等を対象として感染齢を考慮し βが変化するモデル[1]も存在する.) これは, 個々の人間に対して社会的(行動範囲や接触 頻度)な,或いは生理学的(感染症に対する過 敏性や性別,年齢など)なばらつきにより大 きく異なり,その他様々な不確定性や時間変 動性を有する基本再生産数を時々刻々と実測 することが困難なためである.その点,実験 系で観察できる個体内でのウイルスの動態は 実測が可能であり,宿主の総ウイルス量が感 染率に影響を与えることも明らかになってい る[2].が,夫々の感染症に対して異なる特性 を示すと思われる,体内で生起するウイルス 盛衰のダイナミクスと宿主が有する感染率と の詳細な関係は未だ解明されていない.本稿 では、感染者の体内でのウイルスダイナミク スを個体間感染症伝搬ダイナミクスに組み込 んだネスティング型モデルを構築し、個々人 のウイルス量によって決定する、時間変動の ある感染率がホスト(宿主)間の感染拡大に どのような影響を与えるのかを multi agent simulation(以下, MAS)により評価する.

2.モデル

2.1 Within-host

$$\frac{dT(t)}{dt} = -\beta_v T(t) V(t) \tag{1}$$

$$\frac{dE(t)}{dt} = \beta_v T(t) V(t) - \gamma_v E(t)$$
(2)

$$\frac{dI(t)}{dt} = \gamma_v E(t) - \delta I(t)$$
(3)

$$\frac{dV(t)}{dt} = pI(t) - cV(t) \tag{4}$$

本稿では Baccam らの方法[3]に倣い、感染 者の個体内感染ダイナミクスは式(1)~(4)で示 される気道上皮の A 型インフルエンザ(H1N1 型)による急性感染を想定する.感染期間中 に標的細胞Tの補充や死亡がない(Tの総量: $T_0 = 4 \times 10^8$ [cells]) とし,各パラメータは感 染実験の結果から推定された値[3]とする.時 間 $t_i = 0$ で個体 i の体内に侵入したウイルス $V_0 = 12.41$ [TICD₅₀/ml] は確率 $\beta_v = 1.466 \times$ 10⁻⁵[(TICD₅₀/ml)⁻¹day⁻¹]でTに感染する.感 染したTはウイルス非産生細胞Eになり, その 後確率 $\gamma_v = 3.274[day^{-1}]$ でウイルス産生細胞 Iに遷移する. Iは産出率 p = 5.826× 10⁻²[(TICD₅₀/ml) day⁻¹]で新たなウイルスV を生産し続けるが, 確率δ = 3.934[day⁻¹]で死 滅する. またVも同様に除去率c= 9.575[day⁻¹]で排除される.

2.2 Between-host

平均次数<k>=8, ノード数N=10⁴の Barabási–Albert Scale Free[4]グラフ上を SIR プ ロセス[5]に従って感染症が伝搬する1シーズ ンのダイナミクスを想定する. 感染はトポロ ジー上のリンクで繋がる個体間でのみ発生す るとし, SIR プロセスを時間離散化した MAS

Fig.1 感染期間中のウイルス量の推移(緑線) とそれに対応する感染率を示す.赤線は従来 モデルの β_{eq} (= 0.104),青線は本研究モデル の $\beta(t)$ (β_{max} = 1.0, α = 1.96).

で実装するために Gillespie 法[6]を用いる. 1 イベント中に 1 個体が状態遷移するとし, イ ベントの発生時間及び状態遷移個体は系内の 全状態遷移確率に応じて動的に変化する. 各 個体の状態遷移確率に関して, 感受性個体*S*は 隣 接 す る 感 染 個 体 *I* が 有 す る $\beta(t)$ [person⁻¹day⁻¹]の総和 $\Sigma\beta_j(t)$, *I*は回復率 γ (= 1/3)[day⁻¹]となる.

個体iがSからIに遷移した時間を $t_i = 0$ とし, 以後式(1)~(4)に従って体内系を計算する. I_i が 有する $\beta_i(t)$ は体内のウイルス量 $\overline{V}_i(t)$ (最大ウ イルス量 V_{max} で規格化: $\overline{V}_i(t) = V_i(t)/V_{max}$)に 比例するとし,式(5)で示されると仮定した[7].

$$\beta_i(t) = \beta_{max} \overline{V}_i(t)^{\alpha} \tag{5}$$

ここで、 V_{max} 時の感染率を β_{max} 、 α は非負の 実数と定義した.ただし、 β_{max} 及び α は本モ デルの time- β 相図 (Fig. 1)の曲線下面積が従 来モデルのそれ(数理疫学モデル解析で仮定 される infectious 期間中一定の β (図1中の青 線;下記式(6)で付与)が縦軸値、幅 days=7 と した面積)と一致するような値をとると仮定 する.これは、days=7 でみた R_0 を保存した上 で、異なる β_{max} すなわち異なる α に対して(5) 式は時々刻々異なる $\beta_i(t)$ を付与することを意 味している.比較対象とする従来モデルの β は、 式(6)で示される基本再生産数 R_0 (= 2.5)を元 に定義されたトポロジー上のリンク1本当た りの相当感染率 β_{eq} とする.

$$\beta_{eq} = \frac{R_0 \cdot \gamma}{\langle k \rangle} \tag{6}$$

また*I*が回復状態*R*に遷移すると体内のウイル スは消滅し $\beta_i(t) = 0$ となる.

MAS での数値実験ではt = 0で初期感染者 ($I_0 = 5$)をランダムにトポロジー上に配置し てから系内に感染者がいなくなる(I = 0)時 点までを1エピソードとし, β_{max} を0.1 ずつ 変化させながら夫々につき独立に10⁴エピソ ードをとった結果を解析対象とする.評価パ ラメータは最終感染者サイズ(以下, *FES* = *R/N* (Final Epidemic Size),ただし*R*は均衡時 回復者数).

3.結果と考察

まず、全感染者の β_{max} (および α)が同一 (β(t)が Fig. 1 の青線に従う)の場合を考え る (Fig. 2). パネル(a)は各 β_{max} で計算した全 エピソードのFESを示すが,結果を見ると同 じβ_{max}であっても感染が拡大するエピソード (以下, SIE (Stable Infected Equilibrium)) と 感染が拡大しないまま収束するエピソード (以下, UDFE (Unstable Disease Free Equilibrium))の両方が存在している.これは, 流行初期の感染者が隣人を感染させる前に回 復状態へ遷移して感染が拡がらないケースと, その前に2次感染者を生み感染連鎖を惹起さ せられるケースとにダイナミクスが分岐する ため、感染拡大にばらつきがあるからである. パネル(b)は各 β_{max} におけるFESの平均を示し ている. パネル(a) の SIE における FES が β_{max} の感度を持たないにも関わらず、 β_{max} が大き くなると(b)の全エピソード平均(緑線)が減 少していることから、 β_{max} の増加に伴い UDFE となるエピソードの割合が増加してい ることが了解される(図では示さないが10⁴エ ピソード中の生起頻度により確認している). また SIE のみのエピソード平均(青線)は従 来モデルのFES (赤破線) に近似する. ことか ら,以下の考察が導き出される. within-host と between-host をネスティングした本モデルで は、体内のウイルスダイナミクスを考慮する

Fig. 2 β_{max} が同質性時の(a)全エピソードの FES 及び(b)平均をとった FES を示す.赤色: 従来モデル ($R_0 = 2.5$)の平均 FES,青色:本 研究モデルの SIE 平均,緑色:本研究モデル の全エピソード平均.

ため,個々の体内のウイルス産生量ピークが ずれることで感染力にもずれが生じ,ピーク 時の感染力が強くともこのラグが因となって, 初期感染者からの感染連鎖が絶たれてしまう エピソードが再現される.このような未然の 感染爆発エピソードを除いた統計を取ると, その最終感染者サイズは time-β相図の曲線下 面積を一定とした従来の数理疫学モデルによ るそれをほぼ一致する.

次に個々エージェントで time- β 相図の形が 異なる, すなわち個々人毎に β_{max} (および α) が異なる場合を考察する. S 状態の個体 i が I 状態の個体 j から感染させられた時, i が有す る β_{max} は式(7)で決定するとする.

$$\beta_{max}^{i} = \beta_{max}^{j} + \delta \tag{7}$$

ここで、 δ は $\delta \in [-\sigma,\sigma]$ (今回は $\sigma = 0.3$ に固定) の一様乱数であり β_{max} の変動幅を示す. β_{max} が決まれば、time- β 相図における7日間の時

間積分値を一致させる条件からαは一意に定 まる.この条件下でウイルス側の戦略として は、①長期間だが小さいB(極限は従来モデル の固定 β_{eq}), ②短期間だがピーク β が大きくな る 2 方向(後述 Fig.3 中の①と②参照)への 進化が考えられる. Fig.3 は全10⁴エピソード のうち SEI に収束した中から最大 FES (パネ ル(a)) と最小 FES (パネル(b)) のエピソード における全感染者数の (β_{max} , α) をプロット したものである.両者を比較すると,最小FES の方が最大 FES より②の方向に進化している. また、既述のように最も感染が広がった(a)の ケースであっても、その FES は従来モデルの FES と同程度(而して稍小さな値)であった ことから、ウイルスにとっての最適戦略は、 ①すなわちβはピークがない平坦な感染力が 長期間にわたり続く「細く長く」の方向であ ると言える.

結言

体内のウイルス量に応じて宿主の感染力が 変動する体内ウイルスダイナミクス(withinhost)とbetween-hostダイナミクスをネスティ ングした感染症モデルを構築した. MAS によ る解析により、本モデルでは、初期感染者か らの感染連鎖が初期に絶たれる未然の感染エ ピソードが再現され、感染拡大となるエピソ ードの最終感染者サイズは従来の数理疫学モ デル SIR による結果とほぼ同等となる. *R*_oか ら求まるβを Infectious 期間中に定値で与え るマクロな考え方が従来の数理疫学モデルで は前提にされているが、これはウイルス側か らミクロに見ると最も感染拡大が生じ易い極 限であることを意味する.

謝辞

本研究の一部は科研費(19KK0262, 20H02314,20K21062)による.また,本研究 は九州大学情報基盤研究開発センター研究用 計算機システムを利用した.記して謝意を表 する.

Fig. 3 SIE の(a)最大 FES と(b)最小 FES エピ ソードの全感染者について β_{max} 及び α をプロ ットした図.赤点は初期感染者を示す.

- K. Dietz, J. A. P. Heesterbeek, and D. W. Tudor,; The basic reproduction ratio for sexually transmitted diseases part 2. Effects of variable HIV infectivity, Math. Biosci., 117, 1–2, 35–47, Sep. 1993
- [2] A. Handel and P. Rohani,; Crossing the scale from withinhost infection dynamics to between-host transmission fitness: a discussion of current assumptions and knowledge, *Philos. Trans. R. Soc. B Biol. Sci.*, **370**, 1675, 20140302, Aug. 2015
- [3] P. Baccam, C. Beauchemin, C. A. Macken, F. G. Hayden, and A. S. Perelson,; Kinetics of Influenza A Virus Infection in Humans, J. Virol., 80, 15, 7590–7599, Aug. 2006
- [4] A.-L. Barabási and R. Albert,; Emergence of Scaling in Random Networks, *Science (80-.).*, **286**, 5439, 509–512, Oct. 1999
- [5] William Ogilvy Kermack and A. G. McKendrick,; A contribution to the mathematical theory of epidemics, *Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character*, **115**, 772, 700–721, Aug. 1927
- [6] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 25, 2340–2361, Dec. 1977
- [7] C. M. Saad-Roy, A. B. McDermott, and B. T. Grenfell, Dynamic Perspectives on the Search for a Universal Influenza Vaccine, *J. Infect. Dis.*, **219**, Supplement_1, S46– S56, Apr. 2019

粒子数が冪分布に従う多分散粉体ガスのレオロジー

山路大樹,石川遥登,高田智史

東京農工大学 機械システム工学専攻

概要

粒子数が冪分布に従う多分散粉体ガスのレオロジーを運動論により記述する。粒子サイズの種類 やサイズ比に対して系の粘性率がどのように変化するかを調べる。その結果、粒子サイズの種類 を増やすと系全体の粘性率がある値に漸近していくこと、さらにサイズ比が大きくなると粘性率 が単分散のものに漸近することを示す。また分子動力学シミュレーションにより、得られた結果 の妥当性についても議論する。

Rheology of polydisperse granular mixtures whose size distribution follows a power distribution

Taiki Yamaji, Haruto Ishikawa, Satoshi Takada

Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology

Abstract

The rheology of polydisperse granular mixtures whose number of particles follows the power distribution is described by the kinetic theory. We investigate how the viscosity of the system depends on the distribution. We find that the viscosity converges to a constant when the number of species of particles increases. We also show that the viscosity also converges to that of a monodisperse system when the size ratio becomes sufficiently large. These results are validated by performing the molecular dynamics simulations of the corresponding system.

1 はじめに

密度があまり高くない単分散の粉体ガスのレオロ ジーについては運動論による記述が有効であり [1,2]、 粒子シミュレーションの結果をよく再現できること が知られている [3,4]。一方、現実の系は多かれ少な かれ異なるサイズの粒子から成る。このような系を 記述するためには多分散に対応した運動論を構築す ることが必要となる。幸い、この場合においても理 論の構築は進んでいるものの [2,5]、粒子の分散が大 規模に渡る系での議論は筆者らが知る限りあまりな い。しかしこのような系、特に粒子分布が冪乗則に 従う系は自然界においてはしばしば見られる [6,7]。 そこで本研究においては、多分散系の理論について 復習するとともに、具体的に系が冪分布に従う場合 のレオロジーを議論する。

2 モデル

図 1 のように、3 次元系において質量 m_i 、直径 σ_i で決まる粒子が M(>1) 種類あると考える。ここ で、 $\sigma_1(\equiv \sigma) > \sigma_2(=\alpha\sigma) > \cdots > \sigma_M(=\alpha^{M-1}\sigma)$ および $m_1(\equiv m) > m_2(=\alpha^d m) > \cdots > m_M(=(\alpha^{M-1})^d m)$ であると仮定する $(\alpha < 1)_\circ^1$ また、こ れらの粒子が直径の $-\beta \notin (\beta > 0)$ に比例した数密 度比 $\nu_i \sim (\sigma_i/\sigma)^{-\beta} = \alpha^{-(i-1)\beta}$ で存在していると する。また系全体の粒子の充填率を φ と置くことに する。

¹本来、多分散系の連続極限を取るとこの α は不要となる。しかしここでは議論を簡単にするためサイズを有限の種類に離散化させたときにサイズを特徴づける量として導入している。

図 1: サイズ比 $\alpha = 1/2$ で M = 4 種類の粒子が 分散している場合の系の典型的なスナップショッ ト。矢印は剪断の方向を示す。

種類 "i"と"j"の粒子が衝突する際のはねかえり 係数を e_{ij} とすると、衝突後の粒子 1 (種類"i")と粒 子 2 (種類"j")の速度 $v_1^{(i)'}$ および $v_2^{(j)'}$ は衝突前の 速度 $v_1^{(i)}$ および $v_2^{(j)}$ を用いて、 $v_1^{(i)'} = v_1^{(i)} - \mu_{ji}(1 + e_{ij})(v_{12}^{(ij)} \cdot \hat{\sigma})\hat{\sigma}$ および $v_2^{(j)'} = v_2^{(j)} + \mu_{ij}(1 + e_{ij})(v_{12}^{(ij)} \cdot \hat{\sigma})\hat{\sigma}$ および $v_2^{(j)'} = v_2^{(j)} + \mu_{ij}(1 + e_{ij})(v_{12}^{(ij)} \cdot \hat{\sigma})\hat{\sigma}$ と記述される。ここで $v_{12}^{(i)} \equiv v_1^{(i)} - v_2^{(j)}$ 、 $\mu_{ij} \equiv m_i/(m_i + m_j)$ であり、 $\hat{\sigma} = (r_2^{(j)} - r_1^{(i)})/|r_2^{(j)} - r_1^{(i)}|$ は粒子 1 と 2 を結ぶ単位法線ベクトルである $(r_1^{(i)} \geq r_2^{(j)})$ は粒子 1 と 2 の位置ベクトル)。

これらの条件の下で、各粒子は運動方程式

$$\frac{d\boldsymbol{r}_{k}^{(i)}}{dt} = \frac{\boldsymbol{p}_{k}^{(i)}}{m_{i}} + \dot{\gamma}y_{k}^{(i)}\hat{\boldsymbol{e}}_{x}, \qquad (1a)$$

$$\frac{d\boldsymbol{p}_{k}^{(i)}}{dt} = \boldsymbol{F}_{k}^{\text{imp}} - \dot{\gamma} p_{k,y}^{(i)} \hat{\boldsymbol{e}}_{x}, \qquad (1b)$$

に従って運動する。ここで、 $p_k^{(i)} \equiv m_i V_k^{(i)} = m_i (v_k^{(i)} - \dot{\gamma} y_k^{(i)} \hat{e}_x)$ 、 $\dot{\gamma}$ は剪断率であり、 F_k^{imp} は番号 kの粒子に作用する衝突由来の撃力、 \hat{e}_x はx軸方向 の単位ベクトルである。また、運動論の結果の妥当 性を調べるためにシミュレーションも行った (付録 A)。ここで、パラメータとしてはd = 3次元、粒子 数 N = 1000 個、充填率 $\varphi = 0.01$ を選び、無次元剪 断率については $\dot{\gamma}^* (\equiv \dot{\gamma} \sqrt{m/k}) = 1.0 \times 10^{-3}$ (k は 粒子のバネ定数) を用いている。

3 運動論

運動方程式は以下の Boltzmann 方程式

$$\left(\frac{\partial}{\partial t} - \dot{\gamma} V_{1,y} \frac{\partial}{\partial V_{1,x}}\right) f_i(\mathbf{V}_1, t) = \sum_j J_{ij}[\mathbf{V}_1|f_i, f_j],$$
(2)

にマップできることが知られている [2, 8, 9, 10, 11]。 以下では *d* = 3 次元を考え、表記を簡単にするため 粒子の種類を表す上付き文字は省略し、*f_i*(*V*,*t*) は 種類 "*i*" の粒子の速度分布関数とする。また、右辺 の衝突項は

$$J_{ij}\left[\mathbf{V}_{1}|f_{i},f_{j}\right] = \sigma_{ij}^{2} \int d\mathbf{V}_{2} \int d\widehat{\boldsymbol{\sigma}} \Theta(\widehat{\boldsymbol{\sigma}} \cdot \mathbf{V}_{12})(\widehat{\boldsymbol{\sigma}} \cdot \mathbf{V}_{12})$$
$$\times \left[\frac{f_{i}(\mathbf{V}_{1}^{\prime\prime\prime},t)f_{j}(\mathbf{V}_{2}^{\prime\prime\prime},t)}{e_{ij}^{2}} - f_{i}(\mathbf{V}_{1},t)f_{j}(\mathbf{V}_{2},t)\right], \quad (3)$$

で与えられる。ここで V_1'', V_2'' は衝突後に速度が V_1 、 V_2 となる場合の衝突前の速度である。Boltzmann 方 程式 (2)の両辺に $m_i V_{\alpha} V_{\beta}$ をかけ、それを速度で積 分することにより、以下の応力テンソルの時間発展 方程式を得る [8, 11]:

$$\frac{\partial}{\partial t}P^{(i)}_{\alpha\beta} + \dot{\gamma}\left(\delta_{\alpha x}P^{(i)}_{y\beta} + \delta_{\beta x}P^{(i)}_{y\alpha}\right) = -\sum_{j=1}^{M}\Lambda^{(ij)}_{\alpha\beta}.$$
 (4)

ここで $P_{\alpha\beta}^{(i)} \equiv \int dV m_i V_\alpha V_\beta f_i(V,t)$ は種類 "i" の粒子についての応力テンソル、 $\Lambda_{\alpha\beta}^{(ij)} \equiv -\int dV m_i V_\alpha V_\beta J_{ij} [V|f_i, f_j]$ は衝突モーメントであ る。なお、(4) 式はこのままでは閉じていない方 程式となっているため、Grad 展開を用いること で式を閉じさせることにする [2, 8, 9, 10, 11]。 この系においては (Bagnold 則に従い) 無次元化 された温度 $\theta_i \equiv T_i/(m\sigma^2\dot{\gamma}^2)$ 、異方温度 $\Delta\theta_i \equiv (P_{xx}^{(i)} - P_{yy}^{(i)})/(n_i m\sigma^2\dot{\gamma}^2)$ 、および剪断応力 $\Pi_{xy}^{(i)*} \equiv P_{xy}^{(i)}/(n_i m\sigma^2\dot{\gamma}^2)$ 、および剪断応力 $\Pi_{xy}^{(i)*} \equiv P_{xy}^{(i)}/(n_i m\sigma^2\dot{\gamma}^2)$ (n_i は種類 "i"の数密度)の時間発 展を考えれば十分である [8, 11]。ここで $\tau \equiv \dot{\gamma}t$ に よって無次元化した時間を導入することにより、系 のレオロジーは 3M 個の連立方程式 [8, 11]

$$\frac{\partial}{\partial \tau} \theta_i = -\frac{2}{3} \Pi_{xy}^{(i)*} - \sum_{j=1}^M C_{ij} \widetilde{\Lambda}_{\alpha\alpha}^{(ij)} \theta^{3/2}, \qquad (5a)$$

$$\frac{\partial}{\partial \tau} \Delta \theta_i = -2 \Pi_{xy}^{(i)*} - 2 \sum_{j=1}^M C_{ij} \theta^{3/2} \left(\widetilde{\Lambda}_{xy}^{(ij)} \Delta \theta_i - \widetilde{\Lambda}_{xy}^{\prime(ij)} \Delta \theta_j \right), \quad (5b)$$

$$\frac{\partial}{\partial \tau} \Pi_{xy}^{(i)*} = -\left(\theta_i - \frac{1}{3}\Delta\theta_i\right)
- 2\sum_{j=1}^M C_{ij} \theta^{3/2} \left(\widetilde{\Lambda}_{xy}^{(ij)} \Pi_{xy}^{(i)*} - \widetilde{\Lambda}_{xy}^{\prime(ij)} \Pi_{xy}^{(j)}\right),$$
(5c)

により記述される。ここで、 $\theta \equiv \sum_i \nu_i \theta_i$ は系全体 の温度であり、 C_{ij} は $m_{ij} \equiv m_i m_j / (m_i + m_j)$ およ び $\sigma_{ij} \equiv (\sigma_i + \sigma_j)/2$ を用いて

$$C_{ij} \equiv 8\sqrt{\frac{2}{\pi}} \frac{\nu_j}{\sum_{\ell} \nu_\ell (\sigma_\ell/\sigma)^3} \frac{m_{ij}}{m} \left(\frac{\sigma_{ij}}{\sigma}\right)^2 \varphi(1+e_{ij}),\tag{6}$$

で与えられる。また、 $\widetilde{\Lambda}_{\alpha\alpha}^{(ij)}$ 、 $\widetilde{\Lambda}_{xy}^{(ij)}$ 、 $\widetilde{\Lambda}_{xy}^{\prime(ij)}$ は $\epsilon_i \equiv m_i \theta / (m\theta_i)$ および $\lambda_{ij} \equiv 2(\mu_{ij}\epsilon_j - \mu_{ji}\epsilon_i) / (\epsilon_i + \epsilon_j) + (\mu_{ji}/2)(3 - e_{ij})$ を用いて、

$$\widetilde{\Lambda}_{\alpha\alpha}^{(ij)} \equiv \left(\frac{\epsilon_i + \epsilon_j}{\epsilon_i \epsilon_j}\right)^{3/2} \left[\lambda_{ij} - \frac{\mu_{ji}}{2}(1 + e_{ij})\right], \quad (7a)$$

$$\widetilde{\Lambda}_{xy}^{(ij)} \equiv \frac{\theta_i^{-1}}{\sqrt{\epsilon_i \epsilon_j (\epsilon_i + \epsilon_j)}} \left(1 + \frac{3}{5} \frac{\epsilon_i + \epsilon_j}{\epsilon_i} \lambda_{ij} \right),$$
(7b)

$$\widetilde{\Lambda}_{xy}^{\prime(ij)} \equiv \frac{\theta_j^{-1}}{\sqrt{\epsilon_i \epsilon_j (\epsilon_i + \epsilon_j)}} \left(1 - \frac{3}{5} \frac{\epsilon_i + \epsilon_j}{\epsilon_j} \lambda_{ij} \right), \quad (7c)$$

と書ける [8, 11]。以下では、(5) 式の定常解を求め ることにより系のレオロジーを決定する。なお、こ の系においては常に Bagnold 則が成立している。

4 レオロジー

本章では前章の枠組みから決定される定常値から得 られるレオロジーについて調べていく。以下では、充 填率 $\varphi = 0.01$ とし、はねかえり係数が $e_{ij} (\equiv e) = 0.9$ $(i, j = 1, 2, \dots, M)$ の場合を考える。

図 2: $\alpha = 1/2$ のときにいくつかの (β , M) に対する 各サイズ σ_i の粒子の粘性率 η_i ($\eta_i^* \equiv \eta_i / (n_i m \sigma^2 \dot{\gamma})$ は無次元粘性率)。塗りつぶしおよび白抜きのマー クはそれぞれ理論 (5) およびシミュレーションか ら得られた結果を示す。

まずは各サイズの粘性率 $\eta_i \equiv -P_{xy}^{(i)}/\dot{\gamma}$ に着目して みる。図2は M および β を変化させたときの粘性率 のサイズ依存性である $(\eta_i^* \equiv \eta_i/(n_i m \sigma^2 \dot{\gamma}) = -\Pi_{xy}^{(i)*}$ は無次元粘性率)。この結果は付録 A で説明するシ ミュレーションの結果ともよく一致している。

さて、ここで系全体の粘性率

$$\eta^{(M)} = \sum_{i=1}^{M} \eta_i,\tag{8}$$

を考えていく。図3を見ると、粒子の種類 M が十 分多くなると粘性率の値は一定の値 $\eta^{(\infty)}$ に収束し、

図 3: いくつかの (β, α) の組み合わせに対する、種 類数 *M* を変化させた際の粘性率 $\eta^{(M)}$ の変化。こ こで破線は (α^M / β)² を示す。

その際の収束の様子が近似的に

$$\left|\frac{\eta^{(M)}}{\eta^{(\infty)}} - 1\right| \sim \left(\frac{\alpha^M}{\beta}\right)^2,\tag{9}$$

で与えられることがわかる。これより、サイズ分散 の比が大きい (αが小さい) ほど、また分布の冪 β が 小さいほどより少ない種類で一定値に収束している ことがわかる。

図 4: 分布の冪 β をいくつか選んだ時の粘性率 $\eta^{(\infty)}$ のサイズ比 α 依存性。破線は $\alpha^{2/\beta}$ を示す。

図4は、サイズ比 α を変化させた際の粘性率の収 束値 $\eta^{(\infty)}$ と単分散系の粘性率 $\eta^{(1)}$ との差をプロッ トしたものである。ここで、単分散系の粘性率 $\eta^{(1)}$ は

$$\eta^{(1)} = \frac{5(2+e)}{72(1+e)^2(3-e)^3} \sqrt{\frac{5(2+e)}{3(1-e)}} \frac{1}{\varphi} \frac{m}{\sigma} \dot{\gamma}, \quad (10)$$

で与えられる [9]。図 4 により、サイズ比 α が 0 に 近づくほど、つまり隣り合ったサイズの比が大きく なるほど粘性率は単分散の結果に漸近していく。α が十分小さくなると η⁽¹⁾ との間の相対誤差が

$$1 - \frac{\eta^{(\infty)}}{\eta^{(1)}} \simeq \alpha^{2/\beta},\tag{11}$$

の形で小さくなっており、ユニバーサルカーブの存 在を示唆している。この傾向は、系全体の粘性率の うち、大きな粒子の影響が支配的になっており [11]、 隣り合ったサイズの比が大きくなる極限ではほぼ単 一の最大サイズの粒子から粘性率が決まってしまう ためであると考えられる。一方、多分散系の連続極 限 (α → 1) においては η^(∞)/η⁽¹⁾ → 0 という結果に なり、小さな粒子が存在したほうが系の粘性率が減 少するということを示している。ただし、この場合 の詳細については今後のさらなる研究が必要である。

5 まとめ

本研究では粒子数が冪分布に従う場合の多分散粉 体ガスのレオロジーを運動論を用いて記述した。運 動論により求めた、各サイズの粒子の粘性率の分布 がシミュレーション結果をよく再現すること、系全 体の粘性率は粒子の種類を増やすと一定値に収束し ていくこと、さらにその収束値はサイズ比が大きく なるにしたがって単分散系の結果に収束する一方、 連続極限においては粘性率が小さくなるという結果 を得た。一方、これらの結果は系の連立方程式を数 値的に解くことにより得られたもので、結果を完全 には理論的に証明できたわけではない。今後は本研 究で得られた知見を基に、それらの方程式を満たす 定常解を解析的に求めることを試みたい。

本稿では稀薄系にのみ着目した議論を行った。今 後の方向性として、まずは有限濃度の系への理論の 拡張などが考えられる。これについては単分散有限 濃度系の解析 [12] を適用できることが期待される。

謝辞

本研究は JSPS 科研費 JP20K14428 および JP21H01006の助成を受けたものです。

A 粒子シミュレーション

本付録では、運動論の結果の妥当性を調べるため に実行した粒子シミュレーションの概要について述 べる。シミュレーションにおいてはバネとダッシュ ポットで与えられるソフトコア系の相互作用を考え、 これを考慮した運動方程式 (1) を時間刻み Δt で積 分することで各時刻の粒子の位置および速度を計算 していく。また、充填率を $\varphi = 0.01$ に固定し、全 粒子数を $N = \sum_i N_i = 10^3 (種類 "i" の粒子数を N_i$ と置いた) とした。さらにシステムサイズについて は $L = [\sum_i N_i \pi \sigma_i^3 / (6\varphi)]^{1/3}$ で決定した。

図2にシミュレーションにより求めたサイズに依

存した各種類の粒子の粘性率をプロットしている。 これらの結果は運動論の結果をよく正当化している ことがわかる。しかしながら現実の系のように多分 散の連続極限を再現するためには *M* → ∞ ととる必 要があり、今回行った *M* = 4 のシミュレーション では不十分である。ただし、粒子サイズが多岐にわ たる (*M* ≫ 1)と、それに対応して粒子数 *N* を多く 用意する必要があり、計算時間が増大する。これに ついては手法についての改良が今後必要となる。

- N. V. Brilliantov and T. Pöschel, *Kinetic Theory of Granular Gases* (Oxford University Press, New York, 2004).
- [2] V. Garzó, Granular Gaseous Flows A Kinetic Theory Approach to Granular Gaseous Flows— (Springer Nature, Cham, 2019).
- [3] N. Mitarai and H. Nakanishi, Phys. Rev. E 75, 031305 (2007).
- [4] S. Chialvo and S. Sundaresan, Phys. Fluids 25, 070603 (2013).
- [5] V. Garzó, J. W. Dufty, and C. M. Hrenya, Phys. Rev. E 76, 031303 (2007).
- [6] N. Brilliantov, P. L. Krapivsky, A. Bodrova, F. Spahn, H. Hayakawa, V. Stadnichuk, and J. Schmidt, Proc. Natl. Acad. Sci. **112**, 9536 (2015).
- [7] H. Stünitz, N. Keulen, T. Hirose, and R. Heilbronner, J. Struct. Geol. 32, 59 (2010).
- [8] J. M. Montanero and V. Garzó, Physica A 310, 17 (2002), Mol. Sim. 29, 357 (2003).
- [9] A. Santos, V. Garzó, and J. W. Dufty, Phys. Rev. E 69, 061303 (2004).
- [10] H. Hayakawa and S. Takada, Prog. Theor. Exp. Phys. **2019**, 083J01 (2019).
- [11] S. Takada, H. Hayakawa, and V. Garzó, arXiv:2107.10522.
- [12] S. Takada, H. Hayakawa, A. Santos, and V. Garzó, Phys. Rev. E **102**, 022907 (2020).

阪神高速ETC統計データの時間的規則性

棋本大悟^{1,2}, 上東貴志¹

¹ 神戸大学 計算社会科学研究センター ² 理化学研究所 計算科学研究センター

概要

マルチケース並列交通シミュレーションに使用できる現実的な典型的 OD(Origin-Destination) 需要を得ることを目的に、阪神高速道路 (株) により提供された、2013 – 2020 年における ETC 統計データを解析した。その結果、データには強い規則性があり、平日ピーク時の利用台数は約 4.5 万台/hr で、午前と午後、週半ばと週末の間で周期的に増減していることが判明した。各料 金所を出入口として利用する車両数は、日付、曜日によって典型的な値を持つことが判明し、現 実的な OD セットを生成することが可能であることが判明した。また、災害時においては大阪北 部地震による利用者数の急激な変化や、COVID-19 による利用者数の減少と回復が確認された。

Temporal regularity of Hanshin Expressway ETC statistics

Daigo Umemoto^{1,2}, Takashi Kamihigashi ¹

¹ Center for Computational Social Science, Kobe University ² R-CCS, RIKEN

Abstract

We analyzed the ETC statistics provided by Hanshin Expressway Co., Ltd. for the period 2013–2020 in order to obtain realistic typical OD(Origin–Destination) demand that can be used for multi-case parallel traffic simulation. The results show that there is a strong regularity in the data, with a peak weekday usage rate of around 45,000 vehicles/hr, with periodic increases and decreases between morning and afternoon, midweek and weekend. The number of vehicles using each toll gate as an entrance and exit was found to have typical values for different dates and days of the week. This allows to generate realistic OD sets. In the case of disasters, a sharp change in the number of users due to the Nothern Osaka Earthquake and a decrease and recovery in the number of users due to COVID-19 were identified.

1 はじめに

近年、1次元の交通流は物理現象としてもよく理 解されるようになった一方で[1]、複雑に結合した道 路の上で成り立つ都市規模の交通はよく理解された とはいえない。都市規模の交通現象を理解するにあ たり、シミュレーションを用いた試みがなされてき たが[2,3]、長期的・普遍的な交通計画を目的とし たシナリオベースのシミュレーションが主流であり [4]、日変動などの特徴を捉えた現実的かつ予測誤差 の導出も視野に入れた中期的なタイムスケールに合 致したシミュレーションの試みは例に乏しい。

都市交通全体の再現を目的とする場合、現実の OD 需要の大半を含む典型的 OD が必要である。都市ス ケールの実交通を分析対象とした研究として ETC 統計データの分析が過去に試みられた例 [5, 6, 7] が 存在するが、分析対象を全交通量の 20 – 30%程度し か代表しない上位 50 位の OD に絞るなどの手法が 用いられており、新たに独自の分析が必要である。

本研究では、阪神高速から提供を受けた ETC 統 計データを分析することにより、シミュレーション の入力として利用可能な典型的 OD の生成を試みる。 また、大阪北部地震や、新型コロナ感染症および緊 急事態宣言により生じた道路の使用状況における変 動を提示し、災害時の交通予測についても考察する。

2 ETC 統計データの特徴

2.1 ETC 統計データの概略

阪神高速は料金徴収のため、ETC 料金所を通過 した自動車の車種・ID を収集している。特定の個人 を識別不可能な状態とするため、時間分解能を1時 間に粗くし、各時間 (9:00-10:00 等) の間に、各料金 所から特定の料金所を目的地として入場した自動車 の台数および車種 (普通車またはトラック) が記録さ れた、2013/9/1 から 2020/10/31 までの8年分にわ たる ETC 統計データの提供を受けた。阪神高速道 路は総延長約 300 km、212 種の入口料金所、236 種 の出口料金所があり、ETC 統計データは計 212 × 236=約 50 万通りの OD ペアの情報を含む。

図 1 に、24 時間の時間分解能で、2017/1/1 --2020/10/31 までの全利用台数の総和を示す。1 日を 均した需要はほぼ 3 万台/hr であることが読み取れ る。2020 年中頃には急激な現象が見られるが、これ は後述する通り COVID-19 の影響である。

図 1: 24 時間の時間分解能で示した、2017/1/1 か ら 2020/10/31 までの全 OD 需要台数の変動。青・ 赤はそれぞれ普通車・トラック

図2に示す通り、週スケールに着目すると、際立っ て周期的な変動が見られる。5日間の平日の間はピー ク時に4.5万台の水準であり、続く土曜日には3.5万 台の水準、日曜日には3万台程度のピーク水準となる。朝昼の総交通需要にも周期的な増減が見られ、 典型的な日変動の存在が示唆される。

図 2: 1 時間の時間分解能で示した、2014/6/1 から 2014/7/1 までの全 OD 需要台数の変動

2.2 日変動

日変動が日によってどの程度異なるか観察するた め、2013年における日変動を重ねて描いたものを図 3に示した。図2においても見られたように、土日と 平日で変動が異なることが読み取れる。各時間の通 行台数を成分とした24次元のベクトルはk-Means 法により平日・土曜日と日曜・祝日の2つのクラス タに分類できることが判明した。

実用上において、深夜から早朝の全 OD 需要から、 その日の 24 時間にわたる通行台数が予測できると有 用である。特に需要の多い平日・土曜における交通 需要の時間変動を 0:00-6:00 の全需要の総和で割っ てスケールしたものが図 4 である。平日の時間変動 はさらに月曜・土曜・それ以外の曜日の三つに分類 可能であることが確認できる。

図 4: 0:00 - 6:00 の総需要で土・月曜に分類され た日変動をスケールしたもの。オレンジ・青・そ れ以外の色はそれぞれ月曜・土曜・土・月曜以外 の曜日

各分類の各時刻における平均値を代表値として用 いると、おおよそ±10%程度のゆらぎを生じている。 このゆらぎの範囲内において、交通需要が正規分布 することが [5] 等によって指摘されているため、平 均値の 10%程度の幅を持つ正規分布による乱数を加 えれば全 OD にゆらぎを付加した出力誤差を含むシ ミュレーションの実装が可能である。

2.3 OD 需要の傾向

シミュレーションの入力として利用可能な OD を 生成するには、以上で論じた総需要に加え、各 OD が全需要と同様に、曜日と時間帯によって代表的な 値を持つことを示す必要がある。図 5 では、最も需 要が大きかった上位二つの OD ペア (安治川 → 北津 守 と 北津守 → 安治川)を例にとり、OD 需要を 縦軸・横軸座標とし、各時間帯を1点として描いた。 4 年分のデータであるため4年×約365 日×24 時間 個の点が打たれている。図 10 は明確に複数のクラ スタに分かれているため各クラスタに含まれるデー タをひとつずつ調べたところ、特定の曜日・時刻に 対応していた。図5 では一例として、7:00 台の交通 需要を予め曜日によって色を変えて示した。

各クラスタ内部での相関は弱く、互いに独立な確 率変数として扱えることが示唆される。各クラスタ

図 5: 需要が上位2位だった二つの OD ペア (安治 川 → 北津守 および 北津守 → 安治川) に対し、1 時間あたりの需要台数を横軸・縦軸にとって描い たスキャッタープロット。一つの点がある日のある 時間に対応。7 時台の需要について、平日・土曜・ 日曜・祝日をそれぞれ青・緑・オレンジ・赤で表示

の分布の幅は、平均値の10%程度であり、時刻と曜 日を指定すれば典型的な値を持つ様子が確認できる。 他の OD ペアについても分析したところ、同様の振 る舞いが確認できた。

3 災害に対する交通需要の応答

図6に2018/6/18日付近の全OD 需要台数の変動 を示した。地震直後に大幅な需要台数の減少が観察 され、翌日の午前中の需要ピークが10%程度高まっ ている。さらに翌日の需要はその前の週の同じ曜日 と比較して、5%ほど低い水準に留まっている。

図 6: 大阪北部地震発生時における全 OD 需要の変動

図 7 には 2020 年の変動を通年にわたりデータが 取得できた箇所まで細い青線 (普通車)・赤線 (トラッ ク) で示した。COVID-19 の感染拡大に伴う需要減 少が確認できる。黒い垂線により阪神地域における 緊急事態宣言の発令 (4/7)・解除 (5/21)、および厚生 労働省が公開している COVID-19 の PCR 陽性者数 を太い青線で示した。交通需要の減少ピークは陽性 者数のピークに先んじ、2ヶ月ほどで回復している。 第 2 波に相当する交通需要減少は見られない。需要 の減少は緊急事態宣言の発出にも先んじている。

図 7: 2020 年における全 OD 需要の変動を細い 青線 (普通車) と赤線 (トラック) で示した。右端 の空白の箇所はデータ未取得区間。阪神地区にお ける緊急事態宣言の開始・終了時を黒い垂線で、 COVID-19 陽性者数の推移を太い青線で示した

4 まとめと考察

阪神高速から提供された 2013 年 9 月 1 日から 2020 年 10 月 31 日までの ETC 統計データを分析し、規 則的な日変動・週変動があることを確認した。総需要 の日変動は曜日によって分類することができ、各時 刻における実際の利用台数は、平均値に対し土 10% 程度の変動を持つことが判明した。また、OD ペア 台数には曜日と時間帯によって典型的な値があり、 ゆらぎは平均値に対して± 10%程度であることが判 明した。これらの結果から、シミュレーションの入 力として実データの他に、典型的な利用パターンの 存在を仮定できると考えられる。実際に OD を生成 する際には、曜日と時刻を固定した上で実交通を測 定し、該当する OD の平均値を求め、それらに対し 独立な乱数によってゆらぎを与えることによって、 現実的なデータを生成できると考えられる。

災害発生時について、大阪北部地震発生時には発 生直後に利用台数が急減し、翌日の台数が増え、さ らに翌日に減少する様子が確認された。これは地震 発生当日に満たせなかった需要を翌日の増加によっ て補ったものと解釈できる。さらに COVID-19 の感 染拡大に伴って需要が減少した。大阪においては陽 性者数のピークはさらに遅く8月であったという別 の事実もあり、需要の減少は緊急事態宣言発出にも 先んじていたため、交通需要と感染者数の増減や緊 急事態宣言そのものとの強い関連性は認められず、 事前に自主的な外出自粛が生じたことが示唆される。

上記の結果によれば、平常時においては典型値を 用いることができるが、災害発生時には全く異なる 需要が実現することが明らかである。災害時の交通 予測を試みる場合、本研究に類する多数の事例を含 む知見に基づいた、災害時における人の行動に関す る深い洞察が必要であると考えられる。

5 謝辞

本研究で用いたデータは阪神高速道路株式会社と 神戸大学の共同研究「大規模計算機及び AI 技術を 用いた交通・防災に関する応用研究」に基づいて提 供され、遂行にあたり JST、未来社会創造事業、JP-MJMI20B4 の支援を受けた。記して謝意を表する。

- Schadschneider, A., Physica A: Statistical Mechanics and its Applications, 313(1-2), 153-187, (2002).
- [2] 内種岳詞 & 伊藤伸泰, 計測自動制御学会論文 集, 52(10), 545-554, (2016).
- [3] Y. Asano et.al., In Proceedings of the International Conference on Social Modeling and Simulation, plus Econophysics Colloquium 2014, 255-264, (2015).
- [4] 坂本邦宏 & 久保田尚, 電気学会誌 128.10: 684-687, (2008).
- [5] 飯田恭敬 & 高山純一,高速道路と自動車, Vol.24, No.12, pp22-32, (1981).
- [6] 西内裕晶,吉井稔雄,桑原雅夫,&割田博,土木 計画学研究・論文集,27,941-950,(2010).
- [7] 横田孝義, 玉川大, 谷口栄一, & 河本一郎, 第 40回土木計画学研究・講演集, (2009)
- [8] D. Umemoto & N. Ito, Journal of Computational Social Science, 1, 493-500, (2018).

電車の形状が乗客の降車時間に与える影響

嘉幡聰至1.川口寿裕1

1関西大学社会安全学部安全マネジメント学科

概要

ボトルネック部における歩行者の挙動は複雑である.このことから、満員の鉄道車両から乗客が一斉に 降車する際、扉付近の車両形状が乗客の降車効率に影響を与えると考えられる、本研究では、セル・オ ートマトンを用いた数値シミュレーションにより、鉄道車両から乗客が降車する挙動を計算した.特に 扉と座席の間のスペースの有無について検討した。その結果、扉と座席の間にスペースの無い車両の方 が、スペースのある車両よりも、乗客の降車時間が短くなった.

Effects of Train Shape on Passenger Egress

Satoshi Kabata¹, Toshihiro Kawaguchi¹

¹Department of Safety Management, Faculty of Safety Science, Kansai University

Abstract

Behavior of pedestrians around a bottleneck is complicated. Thus, the shape of railway vehicle can affect the passenger egress at a terminal station. The behavior of the passenger egress is numerically simulated by using the Cellular Automaton in this study. The effect of clearance between the door and the seat on the egress time is investigated. As a result, the egress time from the vehicle without clearance between the door and the seat was shorter.

1 緒言

通勤ラッシュ時の電車に乗ると、大勢の人が一気に 2.1 基本モデル 降車しようとして、降りるのが遅れることがある. 電車の 車両の出口のようなボトルネックにおいては障害物が 現する. 歩行者の流れをスムーズにすることはよく知られており、車両の中に乗客をランダムに配置した後、扉が開いた 実験も行われている. 電車の車両において, 扉周辺の て移動させ, 降車させる. 座席前のスペースが空くと, 能性がある.

行った. そのシミュレーションが実際の事象を再現して 向に進行することがないようにしている. いるかどうかを確かめるため、シミュレーションの検証を 行った後,特に,扉と座席の間のスペースの有無に着 説明する. 目し,現行の車両と新たに提案する車両で降車にかか る時間を比較した.

2 シミュレーションモデル

本研究では歩行者の動きをセル・オートマトンで表

それを裏付ける歩行者のボトルネックの脱出に関する 瞬間からのシミュレーションとして,乗客を出口に向け 構造を変更すれば,乗客の降車がスムーズになる可 座席に座っていた乗客を発生させ,同様に移動させた.

乗客の移動については、ムーア近傍による静的フロ 本研究では、終着駅で混雑した車両から全乗客が アフィールドを適用した.ただし、座席角や戸袋部など 一斉に降車する様子について数値シミュレーションを をすり抜けないように,一部のセルにおいては斜め方

以後,今回使用したシミュレーションの特徴的な点を

2.2 拡張クイックスタートモデル

通常のセル・オートマトンでは進行先のセルにすで

に歩行者がいると進行できず,前を歩く人と常に1セル 間(時間刻み幅)は,セルのサイズと歩行者の歩行速 は、この挙動は合理的かも知れないが、混雑した車両 歩行速度を計測した。 からはもっと間隔を詰めて降車するのが普通であると 考えられる.

できるようにモデルの改良を行った.

(c)歩行者の位置を繰り返し更新した図 図1:クイックスタートモデル

6,8 番目)のみが進行し、図 1(b)の状態になる.ここで、と、図 2の緑色の折れ線のようになる. 時間進行せずに前方が空いた歩行者(図 1(b)の左か ら 2.5 番目)を移動させる.ただし、すでに移動した歩 (図 2 の青色の曲線)と、式(1)が得られる. 行者(図 1(b)の左から4,7,9番目)は前方が空いてい ても移動しない(図 1(c)).

ここまでの結果はクイックスタートモデルで時間進行 させたものと同様である.2次元モデルになると、複数 の歩行者が特定のセルに進行しようとすることがあるが, 通常の2次元平面内の移動ルールと同様に一様乱数 を用いて進行する歩行者を決定している. 本研究では 時間進行させずに移動させる操作を繰り返すことにより、 一部の歩行者が進めないようにすること以外に複雑な 2.4 位置更新1回当たりの秒数 ルールを追加することなく、3人以上の歩行者が間隔 張した.本計算においては、車両の出口から最も遠い ることで表現することができる. 歩行者が出口に向かうまでに必要とする最小位置更 新回数が10回であることから,最大10人までが間隔を回程度と少ない場合,統計平均としての歩行速度をう 空けずに移動できるように設定した.

2.3 乗客の歩行速度

シミュレーション上の位置更新 1 回当たりの経過時

分の間隔をあけて歩くことになる. 広い場所において 度から決定される. 鉄道車両内における実際の乗客の

鉄道車両内での歩行速度は一般的な平面歩行速 度よりも小さいと考えられる. そこで, 実際に JR 京都線 そこで本研究では,歩行者が間隔を空けずに移動 大阪駅に停車している車両内を標準的な速度で歩行 している乗客の歩行速度をストップウォッチで実測した ところ, 1.16[m/s]であった. 本研究において, セルは一 辺 0.45[m]の正方形としたため、この速度に対しての位 置更新1回当たりの経過時間は0.38[s]となる.

図 2:歩行距離による歩行速度の変化

人間健康工学研究センター[1]によると、歩行速度が 例えば、図 1(a)に示すように歩行者が一方通行の通 最大になるまでに 2~3m の距離が必要である.歩行距 路に配置された場合、通常のセル・オートマトンであれ 離ごとの歩行速度の変化のデータ[1]から、20~70歳の ば、前方のセルが空いている歩行者(図1(a)の左から3、男女の平均歩行速度を歩行距離に対してプロットする

この変化が指数関数の形をとると仮定して近似する

$$V = V_{Max}(1 - e^{-\frac{x}{0.72}})$$
(1)

ここで, xは停止位置からの歩行距離, Vは距離xに おける歩行速度, VMax は最大歩行速度である. 図2の 橙色の曲線はVMaxとして上記の1.16[m/s]を適用した曲 線である.本研究では,乗客が移動する際の加速につ いても考慮した.

歩行速度の異なる歩行者が混在する場合,前方セ を空けずに移動できるようクイックスタートモデルを拡 ルが空いているときの進行確率を歩行者ごとに設定す

> しかし、本計算のように歩行者の進行回数が最大10 まく表現できない.加えて、車両内に密集している状況 では,前方の歩行者が進行するかどうかが大きく影響 するため、1 人の歩行者の進行確率のブレによって計 算結果が大きく左右されることになる.

ョンを実施したところ、実測値の2倍以上の降車時間がの映像を用いて個人で測定した. かかったことから、この手法を用いることは適切ではな いと考えられる.

そこで、本研究では位置更新1回ごとに、すべての 歩行者に対して,停止していた状態から何連続で進行 している状態かを表す連続進行数を歩行者ごとに取 得して,車両内での歩行速度の変化の近似曲線の関 数をもとに、位置更新内で動いた歩行者の歩行速度 時間刻み幅を計算することとした.

また,後方を歩行する歩行者 a が前方を歩行する歩 行者bよりも歩行速度が大きいのに後ろについて歩くと いうことは現実的ではないので、歩行者 a の連続進行 数を歩行者bの連続進行数以下の値にしている.

この手法は個々の歩行者が加速しながら移動する 挙動を正確に表現できるものではないが,加速しなが おける降車挙動にはばらつきが見られる. ら移動する歩行者を含む集団の全体的な挙動を定量 的に模擬できるものと考えられ, 混雑した鉄道車両から

2.5 衝突関数の導入

全ての歩行者が進行方向を決定した後,複数の歩 行者の進行するセルが, 重複することがある. 本研究 因があると考えられる. つまり, 扉が開いてしばらくは普 では柳澤[3]を参考に、衝突関数を導入した。

衝突が起こっても無理矢理進もうとする確率は、柳 澤ら[4]を参考に、衝突を発生させている人数と衝突係 数から与えた.

2.6 歩行者の初動

人は歩行速度が最大になるまでにだけでなく,動き 出すまでにもある程度時間がかかる.

人間健康工学研究センター[1]によると、音と光によ る合図を受けてから動き出すのにかかる時間は、満員 電車をよく利用すると考えられる 20~70 歳の男女で平 均値をとると, 0.88 秒であった.

前方の歩行者が動き出す瞬間を多少予測できると はいえ,乗客全員が停止した状態から一斉に動き出す ことは現実的ではないため、本計算は、乗客の歩行速 度を求めるのに必要となる連続進行数が0回目である 歩行者については、位置更新の繰り返しを 2 回までと した.

3 シミュレーション検証

JR 京都線大阪駅において、大阪駅を終着駅とする

実際に,進行確率によって歩行速度を表現する手 快速列車に対して,乗客全員が降車し終えるのにかか 法を用いて混雑した鉄道車両からの降車シミュレーシ る時間,合計人数,5 秒ごとの降車人数をビデオカメラ

座	席		座	席	
		Α			
座	席	В	座	席	

図 3:JR 京都線の快速急行列車の形状

現状の快速列車車両を模した領域(図 3)から乗客 の平均値と, セルのサイズから位置更新 1 回当たりの が降車する様子をシミュレーションし測定結果と比較し た. 経過時間に対して車両から降車した乗客の累積人 数をプロットした結果を図4に示す.計測した車両から の降車人数が 44 人であったため、シミュレーション上 にも乗客を 44 人配置した. 計算は初期状態を変化さ せ,5回行なったものをプロットしている. 初期状態にお いて乗客をランダムに配置しているため、5回の計算に

5 秒, 10 秒において,本計算結果は実測値とよく一 致していることがわかる.しかし,時間の経過とともに, の降車時間について精度向上につながると期待できる.本計算における降車人数は実測値を上回っていくこと がわかる. つまり, 本計算における乗客は実際の乗客 よりも早く降車していることになる.

> この違いについては,実際の乗客の降車挙動に原 通に乗客が降車するが,急がない乗客は混雑を避け てゆっくり降車しようとするため,時間の経過とともに降 車のペースが落ちる.本シミュレーションではこのことを 考慮しておらず,全乗客が同じペースで降車しようとす るため,前述の計測結果との差が生じたものと考えら れる.

4 結果と考察

現状の車両形状(図3)に対して、図5のように扉と 座席の間のスペースがない車両を考え,乗客の降車 の様子をシミュレーションした.2 つの車両に対する計

算結果を比較することで,鉄道車両の扉付近の形状が 合わせて20人と統一した.

座	席		座	席
	A			
座	席	В	座	席

図 5:扉と座席の間にスペースがない車両モデル

それぞれの車両に対して 10 回ずつ計算を行い,降 車にかかる時間を求めた. さらに, 車両中央付近(図 3, 5 結言 図5のA部分),車両扉付近(図3,図5のB部分), 車両全体における乗客の衝突回数を計算した. 結果 を図6にまとめる.

ここで衝突回数とは、複数の乗客が同じセルに進行 しようとした回数のことを意味し、位置更新ごとに、すべ てのセルにおいて,乗客がそのセルに進行するかどう かにかかわらず、衝突関数によって進行する確率が計 算されるごとに回数を加算していった. 衝突の発生に よりアーチアクションが発生し、降車時間の遅れへと繋 がる.

ある車両(以後,スペースがある車両と記す)よりも,扉 と座席の間にスペースがない車両(以後,スペースが ない車両と記す)の方が平均で約 5.3 秒(約 15%)短く なった.これは現状の車両形状をスペースがない車両 に変更することで乗客の降車時間を短縮できる可能性 があることを示唆している.

[5] 衝突回数に着目すると、スペースがない車両の場合 中央付近の A 部分ではスペースがある車両よりも多く なっているが, 扉付近の B 部分では少なくなっており, 車両全体での衝突回数は4%程度少なくなっている.

乗客の衝突については車両内の全てのセルにおい 乗客の降車挙動に与える影響について調べた. 乗客 て同様に発生するように設定しているが, 衝突の 90% の合計人数はどちらも座席に座っている人も合わせて 前後がボトルネック部を含む A 部分や B 部分で発生し 60人とし,座席に座る人数も片側に10人ずつ,両側を ていることがわかる.特に扉付近の B 部分でのアーチ アクションの発生は降車時間の遅れに繋がりやすいと 考えられる. スペースがある車両では乗客は A 部分と B部分の2段階でボトルネックを通過することになるが、 スペースがない車両では B 部分のボトルネックが消滅 している. このことにより B 部分での衝突回数が少なく なり、スペースがない車両での降車時間の短縮に繋が ったと考えられる.

加速している歩行者を含む, 混雑した鉄道車両から の降車挙動を表現するためのシミュレーション手法を 提案した. 扉と座席の間のスペースがない車両形状に 変更することで,扉付近におけるアーチアクションが抑 制され,降車時間を短縮できる可能性があることが示 唆された.

謝辞

本研究は JSPS 科学研究費補助金基盤研究(C) (課 題番号:19K04936)の支援を受けた.記して謝意を表す る.

- [1] 一般社団法人人間生活工学研究センターHOL デ ータベースサイト, 2001, 高齢者対応基盤整備計画 研究開発 第2編データベース整備(動態・視聴覚 特性), 32-34, 54-60, 203-209, 222-229.
- [2] 通商産業省工業技術院生命工学工業技術研究所, 1996、設計のための人体寸法データ集.
- 降車時間に着目すると,扉と座席の間にスペースが [3] 柳澤大地,2014,群集の一方向流・双方向流・退出 過程とセルオートマトンモデル,混相流,28-3,312-320.
 - [4] 柳澤大地,友枝明保,西成活祐,2008,拡張フロアフ ィールドモデルによるボトルネック周りの群集運動 の解析,応用力学研究所研究集会報告, No.19ME-S2.
 - Nishinari, K., Suma, Y., Yanagisawa, D., Tomoeda, A., Kimura, A. and Nishi, R., 2008, Toward Smooth Movement of Crowds, Pedestrian and Evacuation Dynamics 2008, 293-308.

PQ方式によって稼働するエレベーター3基の 運用効率改善シミュレーション

川口隼平¹,金井政宏^{1,3},田中基大²

¹ 久留米工業大学大学院電子情報システム工学専攻² 久留米工業大学大学院自動車システム工学専攻 ³ 久留米工業大学工学部教育創造工学科

概要

久留米工業大学100号館にある3基のエレベーターは講義前後、講義に向かう人講義から帰る 人によって非常に混雑する。そこで本研究では運用効率改善のため、キューイング方式の中でも 優先度クラスを用いた PQ(Priority Queuing)方式を用いることで、シミュレーションによっ て待ち行列の改善について調査した。その結果、各エレベーターが移動する階を指定することで 運用効率の改善を行うことができると分かった。

Operation efficiency improvement simulation of 3 elevators operated by Priority Queuing

Shumpei Kawaguchi¹, Masahiro Kanai^{1,3}, Motohiro Tanaka²

¹ Department of Electronics and Information System Engineering, Kurume Institute of Technology

 2 Department of Automotive System Engineering, Kurume Institute of Technology

 3 Department of Education and Creation Engineering, Kurume Institute of Technology

Abstract

The three elevators in Kurume Institute of Technology Building 100 are very crowded before and after the lecture, depending on who goes to the lecture and who returns from the lecture. Therefore, in this study, in order to improve operational efficiency, we investigated the improvement of the queue by simulation by using the PQ (Priority Queuing) method that uses the priority class among the queuing methods. As a result, it was found that the operational efficiency can be improved by designating the floor on which each elevator moves.

1 はじめに

シチズン時計株式会社が行ったビジネスパーソン の待ち時間意識調査[2]によると「"30秒まで"で 半数近く(47.7%)が、"1分"経つと4人に3人強 (76.7%)がイライラを感じます。」とあり、30秒 から1分以上の待ち時間が発生する場合において、 待ち時間を短縮することはエレベーターの快適さ改 善において重要な課題であると考える。本研究では 久留米工業大学9階建のビルにある3基のエレベー ターをモデルにシミュレーションを作成し、現実で は検証しにくい事象を再現することでエレベーター における最適化について解くことを目標とする。

2 シミュレーションについて

シミュレーションでは講義前の時間において、客 が講義の教室に向かうため1階のメインターミナル から各講義室へ上向きのトラフィックが発生するパ ターン Up-peak traffic をモデルにする。

仮説 2.1

先行研究 [1] によると、学生がエレベーターに到 着した順で搭乗することで複数の目的階に停止する ことになり、停止する階を振り分けることができれ ば停止する階を減らすことが出来るとある。このこ とから客全体の目的階に合わせエレベーターに乗る 人の階数を指定することで効率化が可能であると考 えた。

2.2 モデル化

久留米工業大学100号館にある3基のエレベー ターに対し授業前に発生する待ち行列に、本研究で は以下の条件を加えることモデル化をした。

1. 客は到着順にサービスを受けようとする。

2. かごに乗る人数は常に一定である。

これによって、到着する客が複数人であっても微 小時間で考えることで1人ずつ到着するため、本学 エレベーターは1階をメインターミナルとして3基 のエレベーターに1列の行列ができるモデルはケン ドール記号で M/M/3 として表すことができる。

図 1: モデル M/M/3 のイメージ

2.3 解析

ケンドール記号 M/M/s で表すことのできるモデ ルでは、システムの効率を平均稼働率 ρとして表す ことが出来る。また平均稼働率は平均到着率 λ と平 均サービス率 μ から算出することができ、平均到着 率は以下のようになる。

C = エレベーターを利用するクラス数

 $n_p = 1 クラスの人数$

t = エレベーターの総稼働時間

 $\lambda = \frac{C \times n_p}{t}$

なるため、平均サービス時間 T_sを算出

 $x_i = i$ 階への平均サービス時間 n = 総利用客数

$$T_s = \frac{1}{n} \sum_{i=1}^n x_i$$

この平均サービス時間は確率によってランダムに 発生するため、シミュレーション内で収束するまで 繰り返す。このとき分散は次のように計算でき、

$$\sigma = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - (\frac{1}{n} \sum_{i=1}^{n} x_i)^2$$

こうして収束した平均サービス時間から平均サー ビス率 μを算出できる。

$$\mu = \frac{1}{T_s}$$

しかし、平均サービス率に関してはエレベーター の性質上そのまま利用することができない。なぜな らエレベーターは客の全員送り切るまでがサービス となるが、サービスが終わってから次のサービスを 開始するためにメインターミナルに戻ってくる必要 があるからである。そこで、エレベーターがサービ スを開始しメインターミナルに戻ってくるまでの時 間をサービス時間 T_b とし同じように計算すると次 のようになる。

 $n_b =$ かご内の人数

$$\mu = \frac{n_b}{T_b}$$

2.4 構成

以上より、本研究で作成したシミュレーションの 構成は次のようになる。また移動時間は実際に計測 を行なった値(図2)を用いる。

- 1. あらかじめ設定した人数がポアソン到着をする。
- 2. ランダムな目的階を持った客にサービスを行う。
- 3. 往復時間をもとに平均サービス率を算出。
- 4. 平均到着率と平均サービス率より、平均稼働率 の算出。
- 5. 同じ条件で繰り返し、平均稼働率の収束も行う。

2.5 優先度

仮説を検証するため、待ち行列に対して行き先階 によって次に乗る客を決定するアルゴリズムを作成 また平均サービス率は平均サービス時間の逆数とした。仮説では到着階を減らすことで効率化するこ とができるため、目的階が同じ客を優先して同じか

	移動時間	1 階あたり
2 階	12.2 秒	12.2 秒
3 階	15.3 秒	7.6 秒
4 階	18.4 秒	6.1 秒
5 階	20.7 秒	5.2 秒
6 階	22.7 秒	4.5 秒
7 階	24.9 秒	4.2 秒
8 階	27.1 秒	3.9 秒
9 階	29.3 秒	3.7 秒

図 2:1 階から各階への移動時間

ごに載せることで到着階数を減らすことができると 考えた。

しかし、同じ階に行く人がおらず最後まで優先度 が低くなることで長時間待たされる客がいる可能性 がある。そこで到着も考慮した評価を行なった。つ まり到着時刻が早いほど優先順位は高くなり、さら に同じ階に行く人が多いほど優先順位は高くなる。

優先順位 P は次の式で求める。また優先順位は値 が小さいほど高い。

r = 同一目的階人数優先度

 $N_d =$ 階数 d を目的階とする人数

 $T_a = 到着時刻$

t = 乗り込み時刻

$$P = \frac{r}{N_d} + \frac{T_a}{t}$$

また同一目的階人数優先度 r とは、同じ階に行く 人が多いグループを優先するか、到着時刻を優先す るかの比率を決める値である。

結果及び考察 3

結果では前述の優先度 r について1・10・50 で行 い、最も平均待ち時間が減った割合が高かったもの について考察する。

またビジネスパーソンの待ち時間意識調査 [2] よ り、イライラする待ち時間の基準を 30 秒・60 秒と 考え、構成における2番目でサービスを行う際に優 先度をつけない状態で行なったシミュレーションを 実験1、優先度をつけかごの載せる客を振り分けた シミュレーションを実験2とし、それぞれの各人数 パターンにおける平均待ち時間の全データをもとに 52%、60秒以上となったパターンはおよそ 0.2%と ヒストグラムで比較し考察した。

図 3: 6 クラス実験1

図 4: 6 クラス実験 2

結果 3.1

ひとクラス 30人、6 クラスが利用したパターンで は基準は 30 秒だけとなり、実験1で 30 秒を超えた パターンが全体のおよそ 68%あったことに対して実 験2では1パターンもなく、大幅な改善が見られた。

7クラスのパターンでは60秒を超えたパターンも あり、実験1で30秒以上・60秒以内であったパター ンが全体のおよそ19%、60秒以上となったパターン はおよそ 79%であったことに対し、実験 2 では 30 秒以上・60秒以内であったパターンが全体のおよそ なった。

また 30 秒以上全てのパターンに関して実験1で は99%であったが、実験2では52%となり6クラス

図 6: 7 クラス実験 2

のパターンと同様に改善が見られた。

8 クラスのパターンでは実験1で60 秒以上のパ ターンが約99%となりほぼ全てとなったが、実験2 では約75%となった。また30秒以上60秒以内となっ たパターンは約24%となり同様に改善が見られた。

3.2 考察

平均稼働率 ρ が改善されると、必然的に平均待ち 時間も改善されるため、各階の利用人数に変動がな いエレベーター・システムであれば、各エレベーター の目的階による利用制限をすることで十分な効率化 が見込めることがわかった。

またこの効率化をするにあたり重要なことは、各 エレベーターの平均稼働率 ρ ができるだけ均等にな るように設定することであると考える。エレベーター を1つのサービスと考えたとき、どれか1つでも偏 りがあれば偏ったエレベーターを利用している客が 不満を感じるきっかけになる可能性がある。

以上から、各階の利用人数とエレベーターの移動 時間がわかれば、利用制限による最適化が可能であ ることが分かった。

4 まとめ

本研究ではエレベーターを外部から支援すること で運用効率の改善を行うシステムについて、シミュ レーションをもとに解析を行なった。

また待ち行列理論において平均サービス率 μ は平 均サービス時間の逆数となるが、サービス時間では なくかごがメインターミナルに戻りサービスが可能 となるまでの時間の逆数とすることで、シミュレー ション結果をより現実に近いものにできた。

最後に利用制限による振り分けからわかるように、 本学エレベーターやオフィスビルのエレベーターを 最適化するには各エレベーターが移動する階を指定 するだけで十分な効率化ができる。

例えばオフィスビルのような常に各階の利用人数 が一定になる場所では、メインターミナルで各エレ ベーターが移動できる階を示すだけで効率化でき、 本学エレベーターでは授業によって客の目的階が変 わるため、教務システムと連携することで時間ごと に各エレベーターの目的階を示すことで効率化が可 能である。

今後の課題として本研究の結果はあくまでシミュ レーションによるため、実証実験を行う必要がある と考える。

また、本研究ではネットワークのキューイング方式 の中で PQ 方式を用いた制御を行なったが、その他 WFQ(Weighted Fair Queuing)、LLQ(Low Latency Queuing) などについてもエレベーターのモデルに 当てはめて最適解について引き続き研究を行う。

- [1] 宇都薫乃,金井政宏,"イライラしないエレベー ター ~エレベーター3基の乗降人数の計測と 分析",交通流と自動駆動粒子系シンポジウム論 文集,(2018).
- [2] シチズン時計株式会社, "ビジネスパーソンの 「待ち時間」意識調査", (2018).

最適速度旋回アルゴリズムによるスキッドステアリング 2Dロボットのひも状走行

山田将司¹,李方正¹,本田泰²

2 室蘭工業大学大学院 工学研究科 情報電子工学系専攻
 2 室蘭工業大学大学院 しくみ解明系領域

概要

我々は以前,二次元最適速度モデルという自己駆動モデルを知能として組み込んだ2次元最適速 度ロボットを開発した.今回新たに,スキッドステアリングにより4輪で走行するロボットを開 発した.以前の2輪走行アルゴリズムをもとに,スキッドステアによる4輪走行のための2次元 最適速度旋回アルゴリズムを導出した.また,接触センサから距離センサに変更することで,障 害物に衝突する前に方向転換を行うようにアルゴリズムを変更した.本研究の目的は2輪の走行 ロボットで観測されたひも状走行が4輪のロボットでも観測できるか実験を行った.結果として, 4輪の走行ロボットでもひも状走行は観測された.

String-like traveling of skid-steering 2D robots by Optimal Verocity Turning Algorithm

Masashi Yamada¹, Li Fangzheng¹, Yasushi Honda²

¹ Division of Information and Electronic Engineering, Graduate school of Engineering, Muroran Instutude of Technology, Japan

 2 College of Information and System, Muroran Institude of Technology, Japan

Abstract

We have developed the 2D optimal velocity robot which is made by incorporating a selfdriven model which is named the 2D optimal velocity model previously. And recently, we also developed a robot that run by four whells with skid steering. Then, we derived a 2D optimal velocity turning algorithm for four-wheels driving by skid steering based on the two-wheel driving algorithm previously. In addition, by changing from the contact sensor to the distance sensor, the algorithm also is changed to another algorithm which operates as robot's direction change before colliding with obstacles. The purpose of this study was to check if the string-like motion can be observed by the four-wheels land-moving robot as same as two-wheels landmoving robot. As a result, string-like motion was also observed with a four-wheel land-moving robots.

1 はじめに

歩行者や交通渋滞といった集団行動は,各個体の 相互作用によって自己組織的に形成される動きであ る. 我々はその中で交通流モデルである一次元最適 速度モデルを2次元に拡張した2次元最適速度ロボッ トを開発した [1].

環境と走行ロボットが相互作用することで行動を

創発する.本研究では,スキッドステアリングで走 行するロボットを使用して実験を行った.スキッド ステアリングとは,スキッド(滑る)とステアリング (操舵)という旋回方法であり,左右のタイヤを滑ら せながら旋回する.走行ロボットの身体性が変化し ても先行研究[1]と同じひも状走行が観測されるか 確かめることを本研究の目的とする.

2 二次元最適速度モデル

二次元最適速度モデルは以下の運動方程式(1)式 で表される[2].自己のロボットの速度と最適速度の 差から,加速度を求めるモデルである.

$$\ddot{\mathbf{r}}_{j} = a \left[\sum_{k} \mathbf{V} \left(\mathbf{r}_{kj}, \dot{\mathbf{r}}_{j} \right) - \dot{\mathbf{r}}_{j} \right]$$
(1)

$$\mathbf{V}(\mathbf{r}_{kj}, \mathbf{\dot{r}}_j) = (1 + \cos \theta_{kj}) f(r_{kj}) \mathbf{n}_{kj}$$
(2)

$$f(r_{kj}) = \alpha \left[\tanh \beta (r_{kj} - b) + c \right] \tag{3}$$

 $V(\mathbf{r}_{kj}, \dot{\mathbf{r}}_{j})$ は *j* 番目のロボットが *k* 番目のロボットから受ける相互作用項である. \mathbf{n}_{kj} は \mathbf{r}_{kj} の単位ベクトルを表す. θ_{kj} は *j* 番目のロボットの速度ベクトルを表す. θ_{kj} は *j* 番目のロボットの速度ベクトル $\dot{\mathbf{x}}_{j}$ と相対位置 \mathbf{r}_{kj} のなす角であり, $(1 + \cos\theta_{kj})$ は異方性を表す項である ((2) 式参照). モデル上では, \mathbf{n}_{kj} は \mathbf{r}_{kj} の単位ベクトルだが, ロボットに組み込む際に, $\mathbf{n}_{kj} = (\sin(\theta_{kj}), \cos(\theta_{kj}))$ と近似した. $f(r_{kj})$ は最適速度関数であり, ロボットとの距離 r_{kj} に応じて引力または斥力を決定する関数である ((3) 式参照).

本研究ではこのモデルを離散化し、走行ロボット の速度ベクトルを走行ロボットの前進する速度と旋 回する速度に変換する必要がある。 Δt 秒後の $\dot{\mathbf{r}}_j$ を 離散化して求めると(4) 式となる。(2) 式内の θ_{kj} は 360°反応できる範囲があるが、ロボットに搭載 されているカメラの画角は約 104°である。よって、 -52° < θ_{kj} < 52°でなければ、カメラで他機体を 認識できない。

4 輪の接地面での速度 v_L , $v_R \& (7)$, (8) 式で求 める.ここでの v_L は進行方向左側の車輪の速度,同 様に v_R は右の車輪の速度を表す.

先行研究 [1] では角加速度を用いて計算していた が、本研究では角速度ωを用いることとした ((6) 式 参照). 角加速度を用いて計算した場合、走行ロボッ トはスキッドステアで旋回するため、アルゴリズム 上の旋回角度とロボットが旋回した角度にずれが生 じてしまう. 旋回方法の変更により (7), (8) 式内の *d* は車輪とロボットの中心との間の距離 (図 1 参照) だが、d を 実際の値よりも大きくすることでより強い旋回力を得られるように変更した。先行研究 [1] で は <math>d = 0.065[m] としていたが、本研究では、d を 旋回力を調整するゲインとして扱うことにし、<math>d = 5 に調整した。

$$\dot{\mathbf{r}}_j(t + \Delta t) = \dot{\mathbf{r}}_j(t) + \Delta t \ddot{\mathbf{r}}_j(t)$$
(4)

$$\dot{\mathbf{r}}_j(t+\Delta t) = (\dot{x}_j(t+\Delta t), \dot{y}_j(t+\Delta t)) \tag{5}$$

$$\omega = \arctan(\frac{\dot{x}_j(t + \Delta t)}{\dot{y}_i(t + \Delta t)}) \tag{6}$$

$$v_L(t + \Delta t) = \dot{r}_j(t + \Delta t) + d \cdot \omega \tag{7}$$

$$v_R(t + \Delta t) = \dot{r}_j(t + \Delta t) - d \cdot \omega \tag{8}$$

3 2次元最適速度ロボットの身体性

本研究では4輪駆動の走行ロボットで実験を行う (図1参照). 先行研究 [1] では2輪とボールキャス ターで走行するロボットであったが,本研究ではス キッドステアリングにより4輪で走行するロボット を使用する. 左右の車輪はそれぞれ中央のギヤに繋 がっていて,2つのサーボモータを用いて独立に回転 させる.2輪から4輪へと変更した理由としては,2 輪とボールキャスターでは地面に段差や凹凸がある 場合ボールキャスターが引っかかってしまう.4輪の 場合だと走破性が高く,段差や凹凸がある場合でも 2輪走行と比べ,比較的安定して走行が可能である.

本研究で使用するロボットには tof 距離センサと カメラ,2つのモータを用いる.カメラは Raspberry Pi Camera というカメラで,他のロボットの方角と 距離を検出している.tof 距離センサは走行ロボット と壁や他機体との間の距離を測定している.進行方 向正面に1つ,進行方向正面から左右45°外側に向 けたセンサを左右に1つずつ,合計3つ装着してい る.tof 距離センサとカメラから得られた情報を利 用して走行ロボットは2つのサーボモーターを動か し走行する.

3.1 他機体認識

本研究では複数の走行ロボットの集団行動を観測 する.そのため、自己のロボットとは別のロボット の相対角度と位置を認識しなければならない.他機 体認識に使用するカメラは Raspberry Pi Camera で ある.本研究ではこのカメラを用いてロボット上部 に取り付けられたピンク色のカップから、他機体と の相対角度と距離を認識している.距離を求める際

図 1: 使用する走行ロボットを真上から見た写真

に,カメラに写ったピンク色のカップの幅から最小 二乗法を用いてフィッティングを行った.

3.2 相乗平均距離と疑似的弾性散乱

本研究では、弾性境界を考慮する必要性があるため、ロボットは壁や他機体を検出して反射する必要がある。壁や他機体に近づいた際には、弾性散乱を行うために tof 距離センサから得られる距離データの相乗平均を (9)、(10) 式で求める。ここで $\gamma = 0.33$ とし、3 つの tof 距離センサから得られる距離データを等加重で計算を行う [3]. 相乗平均距離を使用する理由としては、障害物に近づいた際に、より反応しやすくするために用いる.

 d_C は中央の距離センサの距離データ、 d_L は左の 距離センサの距離データ、 d_R は右の距離センサの距 離データである. tof 距離センサから得られる距離 データの単位は [m] である.

$$\bar{d_L} = d_C^{\gamma} \times d_L^{1-\gamma} \tag{9}$$

$$\bar{d_R} = d_C^{\gamma} \times d_R^{1-\gamma} \tag{10}$$

本研究では、 d_L または d_R が 0.2 以下になった場合 はその場で d_L と d_R の値が大きい方へ 0.3 秒間、出 力 100[%] で方向転換する。この方向転換を擬似的 弾性散乱とみなす。

4 走行実験

本研究では、図2のドーナツ型コース、走行ロボット8台を用いて走行実験を行う.外側の壁は半径2[m] の円、内側の壁は半径1[m]の円である.初期状態として、コース上に4台を時計回りに配置,残りの4 台を半時計回りに配置して実験を行う.走行実験では、2種類のアルゴリズムで走行させ流量を比較する.1つ目のアルゴリズムは、弾性散乱のみで走行す

図 2: 実験コースをコース中心真上から見た写真 (ひも状走行になっている状態)

るアルゴリズムである. $d_L < 0.2$ もしくは $d_R < 0.2$ であれば、弾性散乱を行う.それ以外の場合には進行方向正面に走行する.

2つ目のアルゴリズムは、2次元最適速度旋回アル ゴリズムである.他機体を発見した場合は近づいてい き、それ以外の場合は進行方向正面に進み、相乗平均 距離で弾性散乱も行う.パラメータはa = 3.0[1/s], $\alpha = 0.15[m/s]$, $\beta = 8.0[1/m]$, b = 0.3[m], c = 1.0で実験を行う.

4.1 評価方法

走行実験は流量という観測量を用いて定量的に評価する((11)式参照).(11)式内のパラメータは*l*:全走行ロボットの通過回数,*t*[min]:計測時間,*w*[m]:使用したコースの道幅である.

$$\mathcal{E}_{rate} = \frac{l}{tw}$$
 (11)

実験コース (図 2) の右側にある赤色の直線を基準線 とする.その基準線を時計回り (緑矢印) に通過する と通過回数を –1 回,反時計回り (水色矢印) に通過 すると通過回数を +1 回する.

5 実験結果

弾性散乱のみと2次元最適速度旋回アルゴリズム での走行を行った.走行状態を表すグラフを図3~ 図6に示す.

図 3, 図 4 のグラフは走行ロボットの θ と時間の 関係図である. 横軸は時間 [秒],縦軸は角度 θ [rad] である. 図 5, 図 6 のグラフは走行ロボットの時間 変化におけるコース中心からの直線距離を表してい る (以下 R と表記する). 図3のグラフでは、実験開始から約80秒までは のグラフが途中で折れ曲がっている.これはロボッ トが方向転換している状態である.約80秒以降は の変化が一定であることから、このロボットは時計 回りに走行している.

弾性散乱のみで走行した場合のグラフである図4 を見ると、実験終了までθのグラフが折れ曲がって いる.2次元最適速度旋回アルゴリズムでの走行に 比べると不安定な走行状態である.

図3から、2次元最適速度旋回アルゴリズムでは、 約80秒以降で時計回りに走行している.図5をみる と、実験開始から約80秒まではコース内を約60cm 移動していることがわかる.これは、対面走行時に 他のロボットと衝突しないよう回避行動をとってい るため、Rの値が大きく変動している.約80秒以 降だと、Rの変化が減少傾向にあることから、他の ロボットを回避する行動が少ない走行状態だと言え る.約230秒以降はひも状走行が形成された.

弾性散乱のみで走行した場合には 2 次元最適速度 旋回アルゴリズムと比べて,実験終了時まで R の値 が大きく変動している.本研究で使用するコースは 図 2 の円形コースであり,比較的密度が低いことか ら走行時には,コースの内側や外側に接近する.す なわち,全ロボットが一方向で走行しているのでは なく,対面走行状態になっている可能性が高いと言 える.このように,θと R のグラフ両方から,走行 ロボットの走行状態を予測することが可能である.

合計8回の走行実験の平均流量は,弾性散乱のみ で走行した場合は6.9,2次元最適速度旋回アルゴリ ズムで走行した場合は8.2となった.ひも状走行が 形成されるため,2次元最適速度旋回アルゴリズム の方が弾性散乱のみと比べて流量が増加する.

6 まとめと今後の課題

本研究は先行研究との相違点として、センサとカ メラの画角を変更した.走行ロボットはスキッドス テアで旋回することから、2次元最適速度旋回アル ゴリズムを開発した.2種類のアルゴリズム(2次元 最適速度旋回アルゴリズム,弾性散乱のみを行うア ルゴリズム)で走行させ、流量という観測量で比較 を行った.結果として、2次元最適速度旋回アルゴ リズムでは、ひも状走行が創発されるため弾性散乱 のみの場合と比較して流量が増加する.本研究で扱 う2次元最適速度旋回アルゴリズムのパラメータは 種類が多く、他のパラメータを使用し実験を行って

図 3: 走行中の時間変化における角度変化 (2dovr)

図 4: 走行中の時間変化における角度変化 (弾性散乱)

図 5: 走行中の時間変化における半径の変化 (2dovr)

図 6: 走行中の時間変化における半径の変化 (弾性散乱)

いきたい.

- [1] 川野多佳也,宮島高志,本田泰,二次元最適速 度ロボットの開発と集団走行実験,第23回交 通流と自己駆動粒子系のシンポジウム論文集, p63-p66,(2018)
- [2] 石渡龍輔,衣川亮太,杉山雄規,Kantorovicmetricを用いた2次元OV粒子の集団流の感応 度依存性の解析,第22回交通流と自己駆動粒 子系シンポジウム論文集,P41-44,(2016)
- [3] 李方正,橋爪晋平,本田泰,非線形感覚運動写像ロボットの対面流 -1 方向走行流への転移と流量のコース幅依存性-,第26回交通流と自己駆動粒子系のシンポジウム,(2020)

あおり運転を考慮したミクロ交通流モデルのシミュレーション

末吉 郁¹, MD. Anowar Hossain¹, 谷本 潤^{1,2}

1 九州大学大学院 総合理工学府 環境エネルギー工学専攻

2 九州大学大学院 総合理工学研究院 環境理工学部門

概要

あおり運転を考慮したエージェントベースのセルオートマトン交通流モデルを,Revised S-NFS モデルを基に 構築した.あおり運転を"走行速度の遅い前方車両に対し,強制的に車線変更を行わせる行為"と定義し,こ の定義に従い車間距離と前方車両との速度差によって与えられる情報からあおり運転の有無を決定する アルゴリズムを導入した.このアルゴリズムを従来の車線変更アルゴリズム,両方を組み合わせた場合を検討 した結果,いかなる場合であってもあおり運転を考慮したケースでは時間平均速度及び流量が低下すること が分かった.

Microscopic Traffic Flow Simulation Considering Threaten Driving Behavior

Fumi Sueyoshi¹, MD. Anowar Hossain¹, Jun Tanimoto^{1,2}

¹ Interdisciplinary Graduate School of Engineering Sciences, Kyushu University ² Faculty of Engineering Sciences, Kyushu University

Abstract

We establish a new microscopic traffic flow model considering threaten driving behavior based on Revised S-NFS model, one of the Cellular Automata models. We define "threaten driving" as forcing a preceding vehicle, which hampers the focal vehicle to accelerate, to change to a neighboring lane. This action, to the focal vehicle, is triggered by the preceding distance and the relative velocity to the preceding vehicle. This model is simulated to compare with two cases; the conventional lane changing strategy that is spired so-called 'incentive criterion' and the case simultaneously considering 'threaten driving behavior' and 'incentive criterion'. As the result, the cases considering threaten driving show lower time-averaged velocity and flux than the conventional case. Therefore, we conclude such a driving behavior can be said as anti-social on the meaning that the entire social efficiency is pulled down.

1. 緒言

近年、いわゆる「あおり運転」に対する世間の関 心が高まっている.2020年に改正道交法が施行さ れ、あおり運転に対しては「妨害運転罪」が適用さ れるようになった.しかしながら、あおり運転の危険性 や厳罰化が周知された現状にあっても、検挙者は 後を絶たない.一方で、あおり運転車両が存在して いるような系において、あおり運転を行う車両自体 が系全体に与える影響については明らかにされて いない.

そこで、本研究では、各車両エージェントにあおり 運転や車線変更を行う・行わないといった属性を 与えた Cellular automata (CA)モデルを構築し、工 学的観点からみたあおり運転の特質について検討 を行う.

2. シミュレーションモデル

本研究では,Kokuboら[1]によって考案された Revised S-NFS モデルに,あおり運転を模擬した エージェントの行動原理を導入した.

2.1 Revised S-NFS モデル

Revised S-NFS モデルは Sasaki, Nishinari ら [2]によって提示された S-NFS モデルに,ランダム ブレーキの車間距離依存性を考慮することで, NaSch (Nagel-Schreckenberg; [3]) 系モデルでは 再現できない, Kerner の3 相理論で云う Synchronized 流[4]を高精度に再現する CA モデ ルである.

Revised S-NFS モデルは以下に記される4つの ルールに従って1 time stepごとに目標速度を決 定し,その目標速度を最大限維持するように各車 両が移動を行う.

- Rule 1. "Acceleration" $v_i^{(1)} = \min \left[V_i^{max}, v_i^{(0)} + 1 \right]$ (1) (Rule 1 is applied only if $g_i \ge G \lor v_i^{(0)} \le v_{i-1}^{(0)}$
- **Rule 2. "Slow-to-start"** $v_i^{(2)} = \min \left[v_i^{(1)}, x_{i-S_i}^{t-1} - x_i^{t-1} - S_i \right] \qquad (2)$ (Rule 2 is applied only if random $[0, 1) \le q$.)

Rule 3. "Quick start" $v_i^{(3)} = \min \left[v_i^{(2)}, x_{i-S_i}^t - x_i^t - S_i \right]$ (3) (In Rule 2 and 3, If random[0, 1) $\leq r$, $S_i = S$; otherwise, $S_i = 1$.)

Rule 4. "Random brake"

$$v_i^{(4)} = \max\left[1, v_i^{(3)} - 1\right]$$
 (4)

(if random[0,1) $\leq 1 - p_i$, Rule 4 is applied) なお,通常の NaSch 系モデルでは, 等しなみに Rule 5 "Avoid Collision"が仮定されているが,本

モデルによるシミュレーション上では,同意の制約 を異なる方法で実装している.また,式中の固有パラ メータについては 2.4 節にて後述する.

2.2 車線変更アルゴリズム

今回提案するモデルでは,2.1節の速度決定ル ールに加え,Kukidaらが考案した車間によって車 線変更を試みるサブモデル[5]を導入した.車線変 更を試みることが許可されている車両は,以下に示 すような2条件を満たした場合にのみ車線変更を 行う.

- i) インセンティブ条件 $gap_{p}^{f} \leq v_{i}^{p} - v_{i-1}^{p} \wedge gap_{n}^{f} > v_{i}^{p} - v_{i-1}^{n}$ $\wedge gap_{n}^{f} > 0$ (5)
- ii) 安全条件

$$gap_n^b \ge v_{i+1}^n - v_i^p \tag{6}$$

ただし、 v_i^p は現在走行している車線pにおける自車 両の速度、 v_{i-1}^p は車線pにおける前方車の速 度、 v_{i-1}^n は隣接車線n(車線変更)における前方車 両の速度、 v_{i+1}^n は車線nおける後方車の速度、 gap_p^f は車線pにおける前方車両との車間距離、 gap_n^f は 車線nにおける前方車両車間距離、 gap_n^h は車線n における後方車との車間距離を示す.端的に述べると,車線変更を行うことで速度を維持できそうか,かつ車線変更後に後続車両に追突されないかという2つの条件で車線変更実施の有無を決定している.

2.3 あおり運転の導入

本研究においては、"走行速度の遅い前方車両 に対し,強制的に車線変更を行わせる"ような行動 を「あおり運転」と定義する.具体的には,i番目の車 両が以下の条件を満たした場合,車線変更パート において前方車両(*i*-1)の排除(*i*-1車両は隣 車線に移る)を試みる.

i)あおり運転条件

 $gap_i^p \leq v_i^{(0)} - v_{i-1}^{(0)} \land v_i^{(0)} - v_{i-1}^{(0)} > 0$ (7) ただし,排除しようとした車両(i-1)がすでに先述 のインセンティブ条件によって車線を移動していた 場合は,あおり運転に該当しない.

2.4 車線変更プロセス

2.2 及び 2.3 節で述べた車線変更を促すルール に則り、以下の順序で車線変更が行われる。

(i) インセンティブ条件による車線変更車両の選出(ii) あおられた車両の選出

(iii) 選出された車両のうち,式(6)の安全条件を満たした車両のみが車線を移る.中央車線から車線 変更を行う際,左右両方の車線ともに移動可能な場合には,より車間距離の大きな車線へ車線変更する.

2.5 シミュレーション環境

本研究のシミュレーションにおけるパラメータは,次の表1に記載の通りである.

3. シミュレーション結果

今回課したエージェントの設定については下記 の Case 1~3の通りである.今後の説明についても この分類に従う.また,全ての統計量は流れ場が十 分に発達するまで 1800ts 待機し,その後 300ts (実 時間で 5 分間に相当)の間で記録された積算量も しくは平均値を用いる.

i) Case 1

全車両はインセンティブ条件をトリガーとする車 線変更を行う/行わないで2グループに分類, あおり運転は行わない.

表1 シミュレーションで用いたパラメーター覧

パラメータ	文字	物理量(単位)
1セルあたりの長さ	-	7.5[m]
車線長	L	3000[cell]
車線数	-	3[本]
車両数	Ν	75~3000[台]
加速判定距離	G	15[cell]
Rule 2,3 見通し台数	S	2[台]
Rule 2 発生確率	q	0.99
Rule 2,3 S変化確率	r	0.98
	<i>p</i> ₁	0.999
ランダムブレーキ	р ₂	0.99
発生確率 p_i	р ₃	0.98
	<i>p</i> ₄	0.01

ii) Case 2

全車両はあおり運転を行う/行わないで2グル ープに分類,インセンティブ条件による車線変 更は行わない.

iii) Case 3

全車両はインセンティブ条件をトリガーとする車 線変更を行う/行わないで2グループに分類, 車線変更が可能なグループに属する車両は, まずインセンティブ条件による車線変更を試み, この試みに失敗した場合にあおり運転を行う.

以後,車線変更もしくはあおり運転が許可されて いる車両を Defector, されていない車両を Cooperator と呼称する.

3.1 基本図

まず初めに,シミュレーションによって得られた基本図を図 1(a),(b)に示す.

これから分かるように,今回の3ケースではいずれ の設定においても,Case 1 が最も良い流量を示し た.

3.2 時間平均速度及び車線変更回数の比較

次に,これらのケースのうち,Defectorの存在割合が10%の場合について,時間平均速度及び車線変 更回数を比較したものを図2(a),(b),(c)に示す.なお,車線変更回数については,計測された車線変 更回数を車両数と計測時間の積で除した値を用いている.

図 1(a) Defector 存在割合 80% (b) Defector 存在割合 10%

4. 考察

今回のシミュレーションでは、Case 1が最も高い流 量を示した.Case 1がCase 2に比して流量大となっ たのは、生起した車線変更回数により説明される. あおり運転により他律的に起きる点でCase 2は Case 1とは車線変更のメカニズムは異なるが、Case 2は相対的に高頻度で車線変更が生じている.こ のことが流れ場に乱れを印加し, Case 2では流量 が悪化した.これに対して、Case 3は他ケースに比し て殆どと云ってよいほど車線変更が生じていない のに、中密度域で著しく流量が悪化する(図1(b)の Case 3プロットは凹状に低下傾向を示している). こ れは図2(c)のDefectorとCooperatorの速度差により 説明される. 既述したように, 結果の統計量は密度 に応じた初期ランダム配置状態から1800ts後の 300tsの時間平均である. 図には示していないが, Case 3では初期配置からfull-fledgedな流れ場とな る1800ts後に至る過渡状態の間に、あおりにより他 者を排除し,かつ自らの力で車線変更する Defectorが3つの車線のうち中央車線以外に偏在 し,彼ら以外のマジョリティ(人口比90%)の Cooperatorのうちそのほとんどが中央車線に犇めき 合う状態が現出する. Defectorは余った2車線をた った10%の車両とわずかなCooperatorで占有する から、この状況が一度現出すると以降は車線変更

(a)Case 1, (b)Case 2, (c)Case 3

が生じなくなる(中央車線以外にいるCooperatorは 十分な速度で走行しているのでDefectorに排除さ れることもなく, Defectorに追い抜かれることもない). この疑似定常状態だけを見れば,車線変更が起き ていないのに系全体の効率が低い,と物理的には 珍妙な状況が出現しているわけだが,これを車線 変更の低頻度さだけをもって社会的に望ましいと することは出来ないだろう. Defectorだけが一方的 にCooperatorを貪る「格差社会」となっているのに 加え,社会全体の効率性は低下しているのが明ら かであるからだ.

5. 結言

本研究では、「あおり運転」が系全体にもたらす影響を工学的観点から評価することを目的に Revised S-NSF モデルを基盤にした新たな CA モ デルを構築した.あおり運転により他車を車線変更 せしめる状況を模した系では、従来のインセンティ ブをトリガーに自律的に車線変更する系よりも効率 は低下する.特に、あおり運転をし、かつ自発的車 線変更を行う定義の Defector が系内に少数だけ 存在し、その他のマジョリティは斜線へ項をしない Cooperator である系では、Defector の平均速度が Cooperator のそれより著しく大きく、同時に社会全 体の効率が押し下げられた状況が現出することに なる. これは、所謂、社会的ジレンマである.社会 ジレンマは、数理的には「自らの利得最大化をは かると社会全体の利得最大化を達成することが出 来なくなる」と定義される.向後は、この多人数ゲー ムの数理構造、ジレンマ存否と交通密度との関係 を明らかにすることが課題である.

6. 謝辞

本研究の一部は科研費(19KK0262, 20H02314,20K21062)による.また,本研究は九州 大学情報基盤研究開発センター研究用計算機シ ステムを利用した.記して謝意を表する.

参考文献

[1] Kokubo, S., Tanimoto, J., & Hagishima, A. (2011). A new Cellular Automata Model including a decelerating damping effect to reproduce Kerner's three-phase theory. *Physica A: Statistical Mechanics and Its Applications*, *390*(4).

[2] Sakai, S., Nishinari, K., & Iida, S. (2006). A new stochastic cellular automaton model on traffic flow and its jamming phase transition. *Journal of Physics A: Mathematical and General*, *39*(50).
[3] Nagel, K., & Schreckenberg, M. (1992). A cellular automaton model for freeway traffic. *Journal de Physique I*, *2*(12). https://doi.org/10.1051/jp1:1992277
[4] Kerner, B. S. (2004). The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory (Understanding Complex Systems). In *Journal of Physical Oceanography* (Vol. 26).
[5] Kukida, S., Tanimoto, J., & Hagishima, A. (2011).

Analysis of the influence of lane changing on traffic-flow dynamics based on the cellular automaton model. *International Journal of Modern Physics C*, 22(3). https://doi.org/10.1142/S012918311101621X

ソーシャルフォースモデルを用いた避難シミュレーションに おける事前出口把握及び誘導の効果

杉山裕¹, 宮川大樹¹, 一ノ瀬元喜²

¹静岡大学 大学院総合科学技術研究科 工学専攻 数理システム工学コース, ²静岡大学 学術院工学領域 数理システム工学系列

概要

避難において,複数の出口を効率的に使うことは避難時間を短縮するために効果的な手段である. 先行研究では,避難エージェントが出口の情報伝達を行うソーシャルフォースモデルによって, 各出口の密度が均一化され,避難時間が短縮できることが明らかにされた.しかし実際には,互 いに出口の情報を共有するだけでなく,出口の情報を事前に知っておくことも避難に効果的であ る.加えて,出口を把握している人が避難誘導を行えば,情報を持たない他の人たちも素早く避 難することができる.そこで本研究では,ソーシャルフォースモデルによる避難シミュレーショ ンを拡張して,事前出口把握と避難誘導が避難時間に与える影響を検証した.その結果,事前出 口把握によって出口利用がより効率化し,避難時間が短縮した.更に,避難誘導は事前に出口を 把握している人の割合が少ないときに最も効果が発揮されることがわかった.

Effects of preliminary knowledge for exits and guidance on evacuation in a social force model

Yu Sugiyama¹, Daiki Miyagawa¹, Genki Ichinose¹

¹ Department of Mathematical and Systems Engineering, Shizuoka University

Abstract

In evacuation, efficient use of multiple exits is an effective way to shorten the evacuation time. A previous study used a social force model where the information of exits among agents is shared. It showed that the density of each exit becomes uniformed, and then the evacuation time decreases. However, in a real situation, it is necessary for people to know the information of exits in advance as well as to share the information with each other. Also, if people who know the information in advance guide the evacuation, the whole people can evacuate quickly. In this study, we examined the effects of preliminary knowledge for exits and evacuation guidance on evacuation simulations using a social force model. The results showed that such knowledge improved the efficiency of exit use and shortened the evacuation time. Moreover, the evacuation guidance was most effective when the fraction of people who has preliminary knowledge of exits is small.

1 はじめに

避難シミュレーションにおいて,複数の出口をい かに効率的に使うかは重要な問題である [1]. ソー シャルフォース (SF) モデル [2–4] を用いた研究では, 周囲の人間と出口の情報を伝達し合うことで複数の 出口をより効率的に利用できることが明らかになっ ている [5].

もし情報伝達だけでなく事前に出口の場所と幅を

把握できている人がいれば,その人達は最適な避難 ができるだろう.更にはその人たちが誘導すること によって,全体の避難時間の短縮も期待できる.し かし,そのような影響についてはまだ研究されてい ない.そこで本研究では,情報伝達を行う SF モデ ルを拡張して事前出口把握と避難誘導を導入し,避 難シミュレーションにより避難時間への影響を検証 する.

2 モデル

本研究では,情報伝達を行う SF モデル [5] に事前 出口把握と避難誘導を導入した避難モデルを構築し シミュレーションを行う.事前出口把握とは,避難開 始時点で既に正確な出口の情報(位置と幅)を持っ ている事を表し,避難誘導は事前に出口を把握して いる避難エージェントが他のエージェントに対して 適切な出口を示すことを表す.本モデルでは,エー ジェントは目指す方向へ向かう力,他エージェント からの反発力,壁から受ける反発力の3つの力に基 づいた運動方程式に従って避難を行う.事前出口把 握と避難誘導は1つ目の目指す方向へ向かう力に反 映される.以下ではそれぞれの力について説明する.

2.1 目指す方向へ向かう力

目指す方向へ向かう力とは,エージェントが避難 するために向かわなければならない方向に自分の進 行方向を修正しようとする力 *F*_d,のことであり,以 下の式を用いて表す.

$$\vec{F}_{d'} = e^{-\alpha_i} \vec{F}_d + (1 - e^{-\alpha_i}) \vec{F}_d^{ik}$$
(1)

ここで, *F_d* はエージェントが出口に向かうために働く修正力であり以下の式を用いて表す.

$$\vec{F}_d = m_i \frac{1}{\tau_i} (v_i^0 \vec{e}_i - \vec{v}_i)$$
 (2)

 m_i はエージェントiの体重, τ_i はエージェントiに 力が加わる時間, v_i^0 はエージェントiの理想の速度, $\vec{e_i}$ はエージェントiの理想の進行方向, $\vec{v_i}$ は現在の 速度を表す.理想の速度は,エージェントの初期設 定の時点で速度 v^0 を平均とした標準偏差 σ の乱数 で決定される [5].理想の進行方向は,現在位置から 選択した出口位置への方向ベクトルである.この力 によって,エージェントは選択した出口の方向へ自 分の進行方向を修正しようとする.

また, \vec{F}_{d}^{ik} はエージェントiが近傍のエージェントkを追従しようとする力であり,以下の式を用いて表す.

$$\vec{F}_{d}^{ik} = m_{i} \frac{1}{\tau_{i}} (v_{i}^{0} \vec{e}_{ik} - \vec{v}_{i})$$
(3)

ここで \vec{e}_{ik} は現在におけるエージェント *i*から近傍のエージェントkへの単位方向ベク トルである.近傍のエージェントをどのように選択 するかは後述する.

式 (1) において α_i はエージェント *i* の情報の伝 達回数を表している.エージェント *i* が出口を直接 認識している場合を $\alpha_i = 0$ とする.出口を認識し ていない場合は近傍のエージェント *k* から情報伝達 によって出口の情報と共に近傍のエージェント *k* の α_k を受け取り,その値に1加算した数値がエージェ ント *i* の *α_i* となる. *α_i* が大きい時, エージェント が持っている情報は多くの人を経由したものであり 不確かなものになっている可能性が高い. このため, そのようなエージェントは近傍のエージェントとし て選択されにくくなる.

事前出口把握はこの α_i に関わる.事前に出口を 把握しているエージェントは初期状態でどの位置に いても最初から各出口までの距離と幅を考慮して以 下の式で出口を選択することが出来るものとする.

$$E_i = \arg\min_x \left(d_{ix}^D w_x^C \right) \tag{4}$$

ここで, E_i はエージェント *i* が選択する出口, d_{ix} はエージェント *i* から出口 *x* までの距離, w_x は出口 *x* の大きさとする. *D*, *C* はそれぞれ出口までの距 離と出口の大きさを評価するパラメータである. で きるだけ最適な出口選択をできるように *D*, *C* を設 定するため,事前に予備的な実験をした結果,本研 究では $D = 1, C = -\frac{1}{2}$ とした. ここで選択した出 口の情報は正確なものとして扱い,事前に出口を把 握しているエージェントが現在どこに位置していた としても式 (1) と式 (5) において $\alpha_i = 0$ とする. し たがって事前に出口を把握しているエージェントは 式 (1) において近傍のエージェントの影響は受けず $\vec{F}_{d'} = \vec{F}_d$ となる.

事前に出口を把握しているエージェントは自分を 中心とした一定範囲内のエージェントに対して避難 誘導を行うことができる.避難誘導されるエージェ ントは、誘導を受けて以降は、式 (4)を用いて出口 を決定し、事前に出口を把握したエージェントと同 様に $\vec{F}_{d'} = \vec{F}_{d}$ で力を受ける.

一方で、事前に出口を把握しているエージェント と誘導されたエージェント以外は近傍のエージェン トからの影響を受ける.このようなエージェントは近 傍のエージェントを選択するために、限定された視 界内から以下に示す式で表されるエージェント*i*が 目指している出口*x*の情報量*S_i*を元に判断する.

$$S_{i} = e^{-\alpha_{i}} \frac{k_{1}e^{-d_{ix}} + k_{2}e^{-\rho_{x}} + k_{3}(1 - e^{-w_{x}})}{k_{1} + k_{2} + k_{3}}$$
(5)

$$\rho_x = \frac{Nr_i^2}{0.5(1.5w_x)^2} \tag{6}$$

ここで、 ρ_x は出口 x 周辺の人口密度、 r_i はエージェ ントiの半径、Nは出口 xを中心とした半径 $1.5w_x$ の範囲内にいるエージェントの数、 k_1, k_2, k_3 は重み を表している([5]を参考に設定).エージェント は周囲の中で最も S_i が大きいエージェントを近傍の エージェントとして選択し、近傍のエージェントと 同じ出口から脱出しようと行動する.

2.2 他エージェントからの反発力

他エージェントからの反発力 \vec{F}_{ij} を以下の式で表す.

$$\vec{F}_{ij} = A e^{[(r_{ij} - d_{ij})/B]} \vec{n}_{ij} + \gamma g(r_{ij} - d_{ij}) \vec{n}_{ij} + \kappa g(r_{ij} - d_{ij}) \Delta v_{ij}^t \vec{t}_{ij}$$
(7)

ここで, A, B, γ, κ は定数, d_{ij} はエージェント $i \geq j$ の距離, \vec{n}_{ij} はエージェント j から i に向かう単位 ベクトル, r_{ij} はエージェント i エージェント j の半 径の合計, g(y) は y が正ならばそのまま返し負なら ば 0 を返す関数である. \vec{t}_{ij} はエージェント $i \geq j$ の 中心を結んだ線に対して垂直な方向の単位ベクトル, $\Delta v_{ij}^t = (\vec{v}_j - \vec{v}_i)\vec{t}_{ij}$ は時刻 t におけるエージェント $i \geq j$ の \vec{t}_{ij} 方向の速度差である. この力によって, エージェントは他のエージェントと距離を取りパー ソナルスペースを保とうとする.

2.3 壁から受ける反発力

壁から受ける反発力 *F*_{io} は以下の式で表す.

$$\vec{F}_{io} = Ae^{[(r_i - d_{io})/B]} \vec{n}_{io} + \gamma g(r_i - d_{io}) \vec{n}_{io} + \kappa g(r_i - d_{io}) (\vec{v}_i \vec{t}_{io}) \vec{t}_{io}$$
(8)

ここで, d_{io} はエージェントiから壁oまでの距離, \vec{n}_{io} は壁oからエージェントiに向かう単位ベクト ル, \vec{t}_{io} は壁oとエージェントiの接線方向ベクトル である.

2.4 位置更新

前節までの力の合力をエージェントが受ける力と して以下のように表す.

$$\vec{F}_i = \vec{F}_{d'} + \sum \vec{F}_{ij} + \sum \vec{F}_{io} \tag{9}$$

エージェント *i* は出口から脱出するために式 (9) の 力 \vec{F}_i を受け、そこから新しい速度 \vec{v}'_i や位置 \vec{P}_i を求 める.

$$\vec{v}_i' = \vec{v}_i + \frac{\vec{F}_i}{m_i} \tau_i \tag{10}$$

$$\vec{P}_i = \vec{P}_i^0 + \vec{v}_i' \tau_i \tag{11}$$

ここで, \vec{v}_i, \vec{P}_i^0 はそれぞれエージェントiの現在の 速度と位置である.

3 シミュレーション

3.1 設定

避難する空間は四方に出口があり、出口の広さは下 の出口が上左右の出口に比べて2倍の幅を持つ部屋 を想定する (図1)¹. また、避難モデル内のパラメー タに関しては [5] を参考に設定した. $m_i = 80$ [kg] , $\tau_i = 0.02$ [s], $r_i = 0.25$ [m], A = 200, B = 0.1, $\gamma = 2.4 \times 10^3$, $\kappa = 4.8 \times 10^3$, $v^0 = 2.5$ [m/s], $\sigma = 0.26$ である. 避難シミュレーションは以下の順序で 行われる.

- 避難エージェントの人数を設定し、各エージェントが事前に出口を把握しているか否かを事前 出口把握者の割合に従って決定する。各エージェントの初期位置と速度ベクトルをランダムに決定する。
- 2. 全出口周辺の密度を式 (6) で求め、全エージェントの持つ情報量を式 (5) で計算する.
- 全てのエージェントが式(5)に基づいて近傍の エージェントを選択した後,事前に出口を把握 しているエージェントが避難誘導を行う.
- 4. 各エージェントの合力,速度,位置を式 (9)~ 式 (11) に基づいて計算し,部屋から出ていたら 取り除く.
- 5. 各パラメータを更新する.
- 6. エージェントが部屋に残っている場合, 2に戻る.
- 7. 避難完了とし、シミュレーションを終了する.

事前に出口を把握しているエージェントの割合を 0~1.0 の間で 0.1 刻み毎にシミュレーションを行い, 避難エージェント数は 200 として 1000 回の試行結 果を平均したものを結果として採用する.

図 1: 避難空間. 上左右の出口は 1m 幅, 下が 2m の出口幅. 全ての出口は各壁面の中央に位置して いる.

3.2 結果

初めに事前出口把握が及ぼす影響について注目す る.図2は事前に出口を把握している人の割合を変 化させた際の避難時間の変化を避難誘導がある場合 (橙線)とない場合(青線)に分けてプロットしたも のである.図2の青線と橙線を見ると,事前把握者 の割合が増加するにつれて,どちらの場合も避難時

¹⁴ 方向とも出口サイズが同じ避難空間でのシミュレーション 結果は,先行研究 [5] から,各出口が均等に利用されることが明 らかになっている.

間が減少している.割合が 0.0 と 1.0 の時を比較す ると約 20%避難時間が短縮されている.

この理由を調べるために,事前に出口を把握して いるエージェントの割合を変化させた際の各出口の 利用エージェント数を調査した(図3).まず,避難 誘導なしに相当する図3aを見ると,1.0未満では全 員が出口に近づいた場合を除いて正しい情報を持っ ていないエージェントが必ず存在するため,出口利 用は1.0に向かって,「下」は減り続け,「上」は増え 続ける.また,事前出口把握者が増加するにつれて 出口利用の偏りが減少し,出口の利用が効率化され ていることが分かる.このようにエージェントが効 率的に避難を行うことによって避難時間が短縮され ていると言える.

次に,避難誘導が及ぼす影響について注目する. 図2の青線と橙線を比較すると,橙線は事前出口把 握者の割合が0.1付近でより急激に避難時間が減少 し,1.0に向かうにつれて青線に近い避難時間になっ ている.また,図3のaとbを比較すると,図3bは 横軸の値が0.1付近になるとより急激に出口利用の 偏りが減少し,1.0に向かうにつれて図3aに近い値 に落ち着いている.以上のことから,事前に出口を 把握している人が避難誘導を行い正確な情報を拡散 することによって避難誘導を行わない場合に比べて 事前出口把握の効果が増進されることがわかる.また,事前に出口を把握している人の割合が高くなると避難誘導がある場合もない場合も大きな差が見られないことから,避難誘導はあくまで事前出口把握の効果を全体に拡散するだけであると考えられる.

図3について、出口幅が同じ「上」と「右・左」 を比較すると、事前に出口を把握している人の割合 が1.0においても、「上」の出口の利用人数が多く均 ーになっていない.これは、「上」は「下」までの距 離が「右・左」に比べて遠いので、「下」に誘引され るエージェントの人数が少ないからであると考えら れる.

4 結論

本研究では,情報伝達を行う SF モデルを拡張し て避難シミュレーションを行い,事前出口把握と避 難誘導が避難時間に及ぼす影響を調査した.その結 果,事前出口把握によって出口利用が効率化され避 難時間が短縮した.また,避難誘導がある場合には, 事前に出口を把握している人の割合が少ない時に最 も効果が発揮されることが分かった.

また, 部屋のサイズが異なる場合についてはシミュ レーションを行わなかったが, 出口の大きさが同じ であれば本研究のエージェントは理想の速度を保と うとするため, 出口を抜ける際の速度は変化しない. そのため最大流量は変わらないため定性的な結果は 変わらないと考察する.

- Y. Xu, H. Huang, Simulation of exit choosing in pedestrian evacuation with consideration of the direction visual field. Physica A **391** (2012) 991–1000.
- [2] D. Helbing, P. Molnár, Social force model for pedestrian dynamics. Phys. Rev. E 51 (1995) 4282–4286.
- [3] D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic. Nature 407 (2000) 487–490.
- [4] Y. Qu, Z. Gao, Y. Xiao, X. Li, Modeling the pedestrian's movement and simulating evacuationdynamics on stairs. Saf. Sci. 70 (2014) 189–201.
- [5] Y. Han, H. Liu, Modified social force model based on information transmission toward crowd evacuation simulation. Physica A 469 (2017) 499–509.

交通流数理研究会 投稿規程

第14回より論文の査読制を導入しています。そのぶん〆切が早くなりますのでご 注意ください。査読制の趣旨は、お寄せいただいている質の高い論文をオーサライズ し、特に若手の方への業績となるように本シンポジウムが貢献したい、というもので す。

講演申し込みの方は、従来どおり、まず論文投稿という形で申し込んでいただきま す。投稿された論文は査読後、その採択を決定した論文について、講演していただき ます。奮って申し込みください。

1. 査読

本論文集に掲載される論文は、査読を経る。投稿者は、シンポジウム開催前の指定 された期日までに投稿する.期限までに投稿された論文は、査読者の報告に基づいて 論文集編集委員会において採否が決定される。

2. 投稿手続き

- ・投稿論文の形式(A4,最大4ページ以内)で、日本語または英語で記述する。
- ・投稿原稿フォーマットは、原則として当研究会で用意した LaTeX スタイルファイ ルを使用する。 そのまま写真製版できる PDF ファイルを email によりエディタ に送付する。ただし WORD ファイルを用いる場合は当研究会配布のスタイルファ イルの体裁にできる限り合わせること。
- ・送り先: エディタ(毎年の開催案内、Webに掲載する。)
- ・なお、メールの本文に、著者、著者所属、論文タイトルを記入してください。
- ・採否にかかわらず原稿は返却しない。
- 修正を要請された原稿は、指定期間内に改訂しなければならない。
- ・投稿論文の論文集を講演集として、シンポジウム開催時に配布する。

3. 掲載料·別刷

掲載科は無料とする。別刷は用意しない。

4. 著作権

投稿論文の著作権は著者にある。論文は、印刷形式及び電子的形式での配布を、交 通流数理研究会に許諾されたものとして、取り扱う。論文集掲載記事内容の責任は著 者が負うものとする。

"Operation efficiency improvement simulation of 3 elevators operated by Priority Queuing".43 Shumpei Kawaguchi, Masahiro Kanai, Motohiro Tanaka

"String-like traveling of skid-steering 2D robots by Optimal Velocity Turning Algorithm".....47 Masashi Yamada, Li Fangzheng, Yasushi Honda

Contents

"Self-organization in pedestrian crowds facilitated by mutual anticipation"1 Hisashi Murakami
"Nonlinear difference equation with bi-stability as a new traffic flow model"
"Pattern transition of injected fluid into a granular bed of highly-swelling gel particles"7 Kojiro Otoguro, Kiwamu Yoshii, Yutaka Sumino
"History-dependent rheological property of wet granular materials"11 Kiwamu Yoshii, Michio Otsuki
"Quantification of final epidemic size on a Small-world network with time-varying its short-cut links"
"Impact of Quarantine, Asymptomatic infected, and its Time delay on Disease spreading in Small- world Networks"
"Interface Effect on Persistence of Cellular Mutually Guiding" Katsuyoshi Matsushita, Naoya Kamamoto, Maki Sudo, and Koichi Fujimoto23
"Analysis on a population-based epidemic model incorporating viral dynamics in a human body"
Yuichi Tatsukawa, Jun Tanimoto
"Rheology of polydisperse granular mixtures whose size distribution follows a power distribution"
Taiki Yamaji, Haruto Ishikawa, Satoshi Takada
"Temporal regularity of Hanshin Expressway ETC statistics"
シンポジウムについてのお問い合わせは、下記までお願いします。

交通流数理研究会

世話人: 杉山雄規

〒464-8601 名古屋市千種区不老町 名古屋大学 大学院情報学研究科 複雑系科学専攻 多自由度システム講座 内

Email: sugiyama@phys.cs.is.nagoya-u.ac.jp

Web: http://traffic.phys.cs.is.nagoya-u.ac.jp/~mstf/