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概要

交通流を記述する数理モデルの中でも，巨視的モデルは，交通ネットワークシミュレーションな

どの大規模な数値計算において，計算コストを低減できるという利点がある．本研究では，交通

流に実験的に見られる一般的な特徴である「双安定性」に着目し，交通流を巨視的に記述する新

しい非線形差分方程式を提案した．その結果，一様解の安定性という観点から，本モデルのパラ

メータが交通渋滞を解消する可能性があることがわかった．さらに、提案モデルと他の交通流モ

デルとの対応関係を調べるために超離散極限と連続極限の結果を示した。
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Abstract

Among mathematical traffic flow models, macroscopic models have the advantage of reducing

computational costs in large-scale numerical calculations such as transportation network sim-

ulations. In this study, we focus on bi-stability, which is a general feature empirically observed

in a traffic flow, and propose a new nonlinear difference equation that describes a traffic flow

at the macroscopic level. We found that the parameters in our model have the potential to

eliminate traffic jams from the perspective of stability of a homogeneous flow. Moreover, ultra-

discrete and continuous limit results are presented to investigate the correspondence between

the proposed model and other models.

1 Introduction

The dynamics of traffic flow includes instabilities

as the average traffic density increases. In other

words, a free flow is stable when the vehicle den-

sity is low, but becomes unstable when the vehicle

density exceeds the critical density. In the latter

case, the traffic flow transits from a free flow into

another stable state, which corresponds to a jam-

ming flow observed as a spontaneous traffic jam.

As an example, Gasser et al. [1] proved that the

instability of a free flow is understood by Hopf bi-

furcation; they numerically showed the global bi-

furcation structure possessed by the optimal ve-

locity (OV) model [2]. The OV model is a car-

following model describing an adaptation to the

optimal velocity that depends on the headway be-

tween two neighboring vehicles; it is well known

for its successful explanation of the mechanism of



spontaneous traffic jams. The results of Gasser et

al. show that the Hopf bifurcation behavior is lo-

cally supercritical, but macroscopically exhibits a

subcritical structure. The optimal velocity model

reproduces“ bi-stability”at a certain density re-

gion, in which free and jamming flows coexist. It

should be emphasized here that this bi-stability

is a general feature empirically observed in traffic

flows [3]. Many mathematical models have been

proposed to reproduce traffic flow. These models

can be approximately classified into three types:

(i) density wave model/gas-kinetic models (par-

tial differential equation), (ii) car-following mod-

els (ordinary differential equation), and (iii) cel-

lular automaton models (max-plus algebra/master

equation/rule-based algorithm). Our interest is in

designing a precise traffic flow model and the rela-

tionship between these descriptions. For example,

the cellular automaton model derived from par-

tial differential equation with bi-stability. Further-

more, the correspondence also facilitate the devel-

opment of a mathematical analysis method for a

cellular automaton model for which analysis meth-

ods have not been developed. Clarifying the cor-

respondence, and understanding the structure of

the solution, are extremely significant from an al-

gebraic point of view. Hence, the aim of this study

is to propose and analyze a new nonlinear differ-

ence equation with bi-stability, and to then show

both models obtained by continuous and ultradis-

crete limits.

2 A new mathematical model

considering past weights

2.1 Proposed model

We propose the following nonlinear difference

equation as a new model:

ρt+∆t
x =ρtx − ρtxb

t
x + ρtx−∆xb

t
x−∆x (1a)

btx =(1− ρtx+∆x)

×
{
1−

(
(1− α)ρt−∆t

x + αρt−∆t
x+∆x

)}
,

(1b)

where ρtx is the density at a lattice x and a time t

and α is the parameter takes the value (0, 1) and

btx is the transition rate of vehicles at a lattice x

and a time t. In this model, one-dimensional road

is divided into a lattice, and the conservation law

of vehicles for each lattice is described. The effect

of
{
1 −

(
(1 − α)ρt−∆t

x + αρt−∆t
x+∆x

)}
is to decide

whether to move to the lattice in front depend-

ing on the congestion in the vicinity. The effect of

(1 − ρtx+∆x) is to brake suddenly when there is a

leading can ρtx+∆x = 1. α represents the strength

of the dependence on congestion in the vicinity of

the driver’s own location.

2.2 Numerical experiments and lin-

ear stability analysis for the new

model

We focus on the bi-stability as the model to con-

firm the validity of the traffic flow model. First we

numerically investigate a homogeneous flow with

a perturbation. In our numerical experiments, we

impose the periodic boundary condition, and then

set ∆x = 1,∆t = 1, x ∈ {1, 2, 3, · · · , L}, where L

is the number of lattices. The initial value of ρ0x is

set as follows:

ρ0x = ρ0 +A sin
2πx

L
, (2)

where ρ0 is the density at x ∈ {1, 2, 3, · · · , L}, and
A is the amplitude of the perturbation. We assume

that ρ0x = ρ1x as the initial value.

We found that the model (1) shows bi-stability

at least at ρ0 = 0.5. It was found that, if the per-

turbation is small, the density wave converges to

the homogeneous solution; However, if the pertur-

bation is not small, the density wave converges to a

traveling wave solution, which is expected to be an-

other solution. In the latter case, as shown in Fig.1

(b), the initial perturbation grows into a traveling

wave. This traveling wave solution is observed to

propagate in the direction opposite to the direction

in which the cars move. This feature is consistent

with the fact that a jam cluster in a real traffic jam

propagates backward [4].

Next, a linear stability analysis was performed

on the model. The bi-stable region was investi-



(a) (ρ0, A) = (0.5, 0.1) (b) (ρ0, A) = (0.5, 0.3)

Figure1: Numerical solutions fortwo cases (a)
A = 0.1, (b) A = 0.3 with ρ0 = 0.5, α = 0.2.
The dashed line is the initial value, and the solid
line is the converging numerical solution plotted
at t = 10, 000.

gated numerically. The results are shown in Fig. 2.

From these analyses, it was found that the unstable

region of the homogeneous solution disappears for

α > 0.401. This suggests that by controlling the

parameter α in the real traffic flow, it is possible to

always maintain the free flow.

Figure2: Graph with L = 100. The solid curve
represents the neutral stability obtained by the
linear stability analysis. The points represent
the bi-stable region, which is obtained numeri-
cally.

3 Ultra-discrete and continu-

ous limit

3.1 Ultra-discrete limit

As one of our aims, we would like to see the corre-

spondence between the ultra-discretized model and

the cellular automaton model. Using the variable

transformations ρtx = e−Un
j /ε, 1−ρtx = e−V n

j /ε, α =

e−A/ε, 1−α = e−B/ε, and taking the limit ε → +0,

we obtain the following ultra-discrete equations:

Un+1
j = min

[
Un
j + Un

j+1, B + V n
j+1 + Un

j + Un−1
j ,

A+ V n
j+1 + Un

j + Un−1
j+1 ,

A+ Un
j−1 + V n

j + V n−1
j ,

B + Un
j−1 + V n

j + V n−1
j−1

]
, (3a)

V n+1
j = min

[
V n
j−1 + V n

j , A+ V n
j+1 + V n−1

j+1 + Un
j ,

B + V n
j+1 + V n−1

j + Un
j ,

B + V n
j + Un

j−1 + Un−1
j−1 ,

A+ V n
j + Un

j−1 + Un−1
j

]
, (3b)

0 = min
[
Un
j , V

n
j

]
, (3c)

0 = min
[
A,B

]
, (3d)

where {0,∞} in Un
j and V n

j correspond to {1, 0}
in the cellular automaton models. Note that

Un
j , V

n
j , A,B ∈ R≥0 ∪ {∞} owing to the inequality

0 ≤ ρtx, α ≤ 1.

3.2 Continuous limit

We are also interested in the correspondence be-

tween our model (1) and previous density wave

models.

We perform the Taylor expansion for (1a) and

take the terms of the second order. If we take the

limit ∆x → 0, ∆t → 0, keeping the maximum

velocity Vmax = ∆x/∆t finite, we obtain

∂ρ

∂t
= −Vmax

∂(ρb)

∂x
(4)

where b = b(x, t) is the limit of btx. Setting v(x, t) =

Vmaxb(x, t), we obtain the continuous equation:

∂ρ

∂t
= −∂(ρv)

∂x
. (5)

Substitution (1a) into (1b) gives

bt+∆t
x =

{
1− (ρtx − ρtxb

t
x + ρtx−∆xb

t
x−∆x)

}
×
{
1−

(
(1− α)ρtx + αρtx+∆x

)}
. (6)

Adding −btx + (btx+∆x − btx−∆x)/2 to both sides

of (6), performing a Taylor expansion, and setting



1/τ
def
= ∆x/∆t2, we obtain

∂v

∂t
+ v

∂v

∂x
= Vmax(1− ρ)

× (v − 2Vmaxρ
2 − 3Vmax − αVmax)

∂ρ

∂x

+ Vmaxρ(1− ρ)
∂v

∂x
+

1

Vmax

V (ρ)− v

τ
,

(7)

where V (ρ) = Vmax(1 − ρ)2, which is the optimal

velocity in a homogeneous flow. Thus, the contin-

uous limit of model (1) is

∂ρ

∂t
=− ∂(ρv)

∂x
, (8a)

∂v

∂t
+ v

∂v

∂x
=Vmax(1− ρ)

× (v − 2Vmaxρ
2 − 3Vmax − αVmax)

∂ρ

∂x

+ Vmaxρ(1− ρ)
∂v

∂x
+

1

Vmax

V (ρ)− v

τ
.

(8b)

Note that the third terms on the right-hand side

correspond to the self-driven force (inner-force)

term used in the models of previous studies [5, 6].

4 Conclusion

In this study, we proposed a new traffic flow

model described by a nonlinear difference equation

and investigated the model both numerically and

analytically. As a result, we analytically obtained

the linear stability condition and numerically clar-

ified the existence of the bi-stability region, where

the solutions converge to different flows depend-

ing on the magnitude of the initial perturbation.

Moreover, the parameters in our model have the

potential to eliminate traffic jams from the per-

spective of a homogeneous flow stability. We also

investigated the correspondences of our model with

other models by taking two limits, that is, the ul-

tradiscrete limit and a continuous limit. However,

the specific correspondence with other CA models

and density wave models has yet to be confirmed.

Future studies will include analytically finding the

bi-stability region and confirming a more detailed

correspondence between the ultradiscrete and con-

tinuous limits.

References

[1] I. Gasser, G. Sirito, and B. Werner, Physica

D 197, (2004), 222–241.

[2] M. Bando, K. Hasebe, A. Nakayama, A. Shi-

bata, and Y. Sugiyama, Phys. Rev. E, 51,

(1995), 1035-1042.

[3] M. Treiber, and A. Kesting, Traffic flow

dynamics: Data, Models and Simulations,

Springer-Verlag Berlin Heidelberg, (2013).

[4] J. Treiterer, J. Myers, Transp. Traffic Theory,

6, (1974), 13–38.

[5] H. J. Payne, Mathematical Models of Public

Systems 1, (1971), 51—61.

[6] B. S. Kerner and P. Konhauser, Phys. Rev. E,

48, (1993), R2335–R2338.


