RIBRETIVE UL TONEEMN%ZE DIERRIE D TR

WA, AR
UK RS TR RO T EIL
2 BIPAYE AT
BE

PR ATRTAEHETVDOFTE, EHNET VI, RERAY MY =2V Ial—Yvavi
EORBIERBUEFHEIZB VT, FEIANREBETEL L WIH MR DB, RFETIE, K@
IR R o b — NS TH D TRLZENE] ITEE L, Rl E ERRIZER 3 258
UWIERRIE D AR ZRE L2, TOME, —HRMOLEEL WS BUEr S, KET VDT
A — X2 RN T A AREMED D B Z ¥ bh oz, T 51T, IREET IV L MDEERE
TV & DX IRBEFRZ R 2 72 D 12 B EEHGRIR & H R Of5H % R U 7z,

Nonlinear difference equation with bi-stability

as a new traffic flow model

Kazuya Okamoto!, Akiyasu Tomoeda 2

! Department of Mathematical Engineering, Graduate School of Engineering, Musashino University

2 Faculty of Informatics, Kansai University

Abstract

Among mathematical traffic flow models, macroscopic models have the advantage of reducing
computational costs in large-scale numerical calculations such as transportation network sim-
ulations. In this study, we focus on bi-stability, which is a general feature empirically observed
in a traffic flow, and propose a new nonlinear difference equation that describes a traffic flow
at the macroscopic level. We found that the parameters in our model have the potential to
eliminate traffic jams from the perspective of stability of a homogeneous flow. Moreover, ultra-

discrete and continuous limit results are presented to investigate the correspondence between

the proposed model and other models.

1 Introduction

The dynamics of traffic flow includes instabilities
as the average traffic density increases. In other
words, a free flow is stable when the vehicle den-
sity is low, but becomes unstable when the vehicle
density exceeds the critical density. In the latter
case, the traffic flow transits from a free flow into
another stable state, which corresponds to a jam-

ming flow observed as a spontaneous traffic jam.

As an example, Gasser et al. [1] proved that the
instability of a free flow is understood by Hopf bi-
furcation; they numerically showed the global bi-
furcation structure possessed by the optimal ve-
locity (OV) model [2]. The OV model is a car-
following model describing an adaptation to the
optimal velocity that depends on the headway be-
tween two neighboring vehicles; it is well known

for its successful explanation of the mechanism of



spontaneous traffic jams. The results of Gasser et
al. show that the Hopf bifurcation behavior is lo-
cally supercritical, but macroscopically exhibits a
subcritical structure. The optimal velocity model
reproduces “ bi-stability ” at a certain density re-
gion, in which free and jamming flows coexist. It
should be emphasized here that this bi-stability
is a general feature empirically observed in traffic
flows [3].

proposed to reproduce traffic flow. These models

Many mathematical models have been

can be approximately classified into three types:
(i) density wave model/gas-kinetic models (par-
tial differential equation), (ii) car-following mod-
els (ordinary differential equation), and (iii) cel-
lular automaton models (max-plus algebra/master
equation/rule-based algorithm). Our interest is in
designing a precise traffic flow model and the rela-
tionship between these descriptions. For example,
the cellular automaton model derived from par-
tial differential equation with bi-stability. Further-
more, the correspondence also facilitate the devel-
opment of a mathematical analysis method for a
cellular automaton model for which analysis meth-
ods have not been developed. Clarifying the cor-
respondence, and understanding the structure of
the solution, are extremely significant from an al-
gebraic point of view. Hence, the aim of this study
is to propose and analyze a new nonlinear differ-
ence equation with bi-stability, and to then show
both models obtained by continuous and ultradis-

crete limits.

2 A new mathematical model
considering past weights

2.1 Proposed model

We propose the following nonlinear difference

equation as a new model:

t+At __ t t 1t t t
T =Pz — pxbx + pac—A;cbaf—Aar

(12)
by =(1 - ptm+Am)

< f1- (-2 apzal) )
(1b)

where p! is the density at a lattice x and a time ¢
and « is the parameter takes the value (0,1) and
bt is the transition rate of vehicles at a lattice x
and a time t. In this model, one-dimensional road
is divided into a lattice, and the conservation law
of vehicles for each lattice is described. The effect
of {1 - ((1 — a)p At + ap;;%tw)} is to decide
whether to move to the lattice in front depend-
ing on the congestion in the vicinity. The effect of
(1 — plya,) is to brake suddenly when there is a
leading can p!, 4+Az = L. a represents the strength
of the dependence on congestion in the vicinity of

the driver’s own location.

2.2 Numerical experiments and lin-
ear stability analysis for the new
model

We focus on the bi-stability as the model to con-
firm the validity of the traffic flow model. First we
numerically investigate a homogeneous flow with
a perturbation. In our numerical experiments, we
impose the periodic boundary condition, and then
set Aw = 1,At =1,z € {1,2,3,---, L}, where L
is the number of lattices. The initial value of p! is

set as follows:

2mx
—_— 2
=, 2)

where pg is the density at « € {1,2,3,---, L}, and

P2 = po + Asin

A is the amplitude of the perturbation. We assume
that p? = pl as the initial value.

We found that the model (1) shows bi-stability
at least at pp = 0.5. It was found that, if the per-
turbation is small, the density wave converges to
the homogeneous solution; However, if the pertur-
bation is not small, the density wave converges to a
traveling wave solution, which is expected to be an-
other solution. In the latter case, as shown in Fig.1
(b), the initial perturbation grows into a traveling
wave. This traveling wave solution is observed to
propagate in the direction opposite to the direction
in which the cars move. This feature is consistent
with the fact that a jam cluster in a real traffic jam
propagates backward [4].

Next, a linear stability analysis was performed

on the model. The bi-stable region was investi-
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Figurel: Numerical solutions fortwo cases (a)
A =0.1, (b) A= 0.3 with po = 0.5, = 0.2.
The dashed line is the initial value, and the solid
line is the converging numerical solution plotted
at ¢ = 10, 000.

gated numerically. The results are shown in Fig. 2.
From these analyses, it was found that the unstable
region of the homogeneous solution disappears for
a > 0.401. This suggests that by controlling the
parameter « in the real traffic flow, it is possible to

always maintain the free flow.
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Figure2: Graph with L = 100. The solid curve
represents the neutral stability obtained by the
linear stability analysis. The points represent
the bi-stable region, which is obtained numeri-
cally.

3 Ultra-discrete and continu-
ous limit

3.1 Ultra-discrete limit

As one of our aims, we would like to see the corre-
spondence between the ultra-discretized model and
the cellular automaton model. Using the variable

~Uz /e

transformations p!, = e A—pt =e Y/ a=

e~A4/¢ 1—a = e B/¢ and taking the limit £ — +0,

we obtain the following ultra-discrete equations:

Uf“ = min|U} + U, B+ V], + U + Uj"—h
A+ Vi, + U} + U;LJ:llv
A+ U + V] + VY
B+UL + Vi + Vi3], (3a)
Vi = min |V 4 VLAV 4V U

B+ V], + V) + U},
B+V+UM, + U

Jj=1>
A+V]P4+U + U}L‘l} : (3b)
0= min [UJ’F', Vj"}, (3¢)
0= min [A,B} (3d)

where {0,00} in UJ' and V/* correspond to {1,0}

Note that
Ui, V', A, B € Ry U{oo} owing to the inequality
0<pl,a<l.

in the cellular automaton models.

3.2 Continuous limit

We are also interested in the correspondence be-
tween our model (1) and previous density wave
models.

We perform the Taylor expansion for (la) and
take the terms of the second order. If we take the
limit Az — 0, At — 0, keeping the maximum
velocity Vinax = Az /At finite, we obtain

9(pb)

op
o oa (4)

ot
where b = b(x,t) is the limit of b.. Setting v(x,t) =
Vinaxb(z, 1), we obtain the continuous equation:
9 _ _9(pv)
ot Ox
Substitution (1a) into (1b) gives

- Vmax

(5)

bt;_At _ {1 _ (p'; — pib; + ptz,AzbifAz)}
X {1 - ((1 —a)pl + Oépiwm) } (6)

Adding —b%, + (b, A, — DL A,)/2 to both sides

of (6), performing a Taylor expansion, and setting



1/7 def Az/At?, we obtain
ov ov
- o = Vmax 1-
5 TV (1-p)
X (’U — 2Vmaxp2 - 3Vmax - anax)%
v 1 Vip)—wv

=+ Vmaxp(l - p)% + Vo,

(7)

where V(p) = Vinax(1 — p)?, which is the optimal
velocity in a homogeneous flow. Thus, the contin-

uous limit of model (1) is

dp _ 9(pv)
ot oz '’ (82)
ov ov
E + 'Uaix :Vmax(l - p)
X (U - 2Vmaxp2 - 3Vmax - anax)%
v 1 Vip)—w
+ Vinaxp(1 — P)gfm + Vo
(8b)

Note that the third terms on the right-hand side
correspond to the self-driven force (inner-force)

term used in the models of previous studies [5, 6].

4 Conclusion

In this study, we proposed a new traffic flow
model described by a nonlinear difference equation
and investigated the model both numerically and
analytically. As a result, we analytically obtained
the linear stability condition and numerically clar-
ified the existence of the bi-stability region, where
the solutions converge to different flows depend-
ing on the magnitude of the initial perturbation.
Moreover, the parameters in our model have the
potential to eliminate traffic jams from the per-
spective of a homogeneous flow stability. We also
investigated the correspondences of our model with
other models by taking two limits, that is, the ul-
tradiscrete limit and a continuous limit. However,
the specific correspondence with other CA models
and density wave models has yet to be confirmed.
Future studies will include analytically finding the
bi-stability region and confirming a more detailed
correspondence between the ultradiscrete and con-

tinuous limits.
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