PRINT ISSN 2434-5474 ONLINE ISSN 2434-5946

## 第26回

## 交通流と自己駆動粒子系

## シンポジウム

論文集

Proceedings of the 26 th Symposium on Traffic Flow and Self-driven Particles

— 2020 —

本シンポジウムの開催には、 JSPS 科研費 JP19K23416 から助成を受けています。

- 日時 : 2020 年 12 月 10 日(木) 13 : 00 18 : 30 11 日(金) 9 : 00 - 17 : 50
- 場所 : オンライン開催 (Zoom Meeting)
- 主催 : 交通流数理研究会 http://traffic.phys.cs.is.nagoya-u.ac.jp/~mstf/

**第 26 回 交通流と自己駆動粒子系のシンポジウム・プログラム** 主催: 交通流数理研究会 場所: オンライン開催 (Zoom Meeting)

2020年12月10日(木)

13:00 – 13:05 あいさつ

13:05 - 13:35 一般 10-1
生物進化の渋滞モデルと種個体数分布
時田恵一郎<sup>1</sup>, 佐藤純<sup>2</sup>
(<sup>1</sup>名古屋大学情報学研究科複雑系科学専攻, <sup>2</sup>お茶の水女子大学ソフトマター教育研究センター)

13:35-14:05 一般 10-2

"The effect of inflow rate and conflict around the exit on evacuation efficiency" Geng Cui<sup>1</sup>, Daichi Yanagisawa<sup>2</sup>, Katsuhiro Nishinari<sup>2</sup>

(<sup>1</sup>Research Center for Advanced Science and Technology, The University of Tokyo, <sup>2</sup>Department of Aeronautics and Astronautics School of Engineering, The University of Tokyo)

14:05-14:15 コーヒーブレイク

14:15-15:05 特別講演 10-S1

"Fundamental diagrams for heterogeneous traffic and their applications"

K. Ramachandra Rao

(Department of Civil Engineering and Transportation Research and Injury Prevention Programme (TRIPP), IIT Delhi )

15:05-15:25 コーヒーブレイク

15:25-16:15 特別講演 10·S2
COVID-19 の数理モデル解析
稲葉寿
(東京大学大学院数理科学研究科)

16:15-16:30 コーヒーブレイク

16:30-17:00 一般 10-3

感染症封じ込めと社会総コスト最小化を両立するための Dynamic vaccination の 特性解析 立川雄一 1, 谷本潤 1,2

(1九州大学大学院総合理工学府 環境エネルギー工学専攻,2九州大学総合理工学研究院環 境理工学部門)

17:00-17:30 一般 10-4

SIRダイナミクスにおける感染率の定義の違いが最終感染者サイズに及ぼす影響

内海忍, 谷本潤

(九州大学工学部エネルギー科学科,九州大学院総合理工学研究院環境理工学部門)

17:30-18:00 一般 10-5

外出人数とCOVID-19 実効再生産数の Scaling 関係による人・人接触項の検証

島田尚

(東京大学大学院工学系研究科システム創成学専攻,東京大学数理・情報教育研究センター)

18:00-18:30 一般 10-6

関西圏における COVID-19 の感染拡大率と外出人数の関係について

黒田大地 1, 島田尚 1,2

(1東京大学工学系研究科システム創成学専攻,2東京大学数理情報教育研究センター)

#### 2020年12月11日(金)

9:00-9:30 一般 11-1

周回方向制限による対面時間の削減効果について

川口寿裕

(関西大学 社会安全学部 安全マネージメント学科)

9:30-10:00 一般 11-2

Multi-Layer モデルにおける待ち伏せ型捕食者の空間パターン形成

中桐斉之<sup>1</sup>, 向坂幸雄<sup>2</sup>

(1兵庫県立大学環境人間学部環境人間学科,2中村学園大学短期大学部幼児保育学科)

10:00-10:30 一般 11-3

リーダー細胞に誘導される集団細胞回転

松下勝義1, 薮中俊介2, 橋村秀典3, 桑山秀一4, 藤本仰一1

(1阪大院理生物,2九大院理物理,3東大総合文化相関基礎,4筑波大生命環境)

10:30-10:50 コーヒーブレイク

10:50-11:20 一般 11-4

1次元交通流におけるエントロピーの定式化と相互情報量を利用したメタ安定状態の検知 三浦紋子<sup>1</sup>、友枝明保<sup>2</sup>、西成活裕<sup>3</sup>

(1データストラテジー株式会社,2武蔵野大学工学部数理工学科,3東京大学先端科学技術研 究センター)

11:20-11:50 一般 11-5

3種類の速度帯に属する歩行者の2レーン上におけるシミュレーション

青木隆広<sup>1</sup>,藤田旭洋<sup>1</sup>,柳澤大地<sup>2,1</sup>,西成活裕<sup>2,1</sup>

(1東京大学大学院工学系研究科航空宇宙工学専攻,2東京大学先端科学技術研究センター)

11:50-12:20 一般 11-6

ASEP に対応する可積分系の数理構造

石黒裕樹1,佐藤純2,西成活裕3

(1東京大学大学院工学系研究科航空宇宙工学専攻,2お茶の水大学ソフトマター教育研究センター,3東京大学先端科学技術研究センター)

12:20-14:00 ランチブレイク

14:00 – 14:30 一般 11-7 樟脳型自己駆動粒子モデル

大澤智興

(九州工業大学大学院 情報工学研究院 物理情報工学研究系)

14:30-15:00 一般 11-8 非線形感覚運動写像ロボットの対面流 -1 方向走行流への転移と流量のコース幅依存性 -李方正<sup>1</sup>,橋爪晋平<sup>2</sup>,本田泰<sup>3</sup> (1室蘭工業大学大学院工学研究科情報電子工学系専攻,<sup>2</sup>室蘭工業大学工学部情報電子工

15:00 – 15:20 コーヒーブレイク

15:20-15:50 一般 11-9
イオンチャネルの開ロビリヤードモデル
中根直哉,宮崎修次
(京都大学情報学研究科先端数理科学専攻)

学系学科,3室蘭工業大学大学院しくみ解明系領域)

15:50-16:20 一般 11-10

2次元破砕性粉体のシミュレーション

石川遥登1, 高田智史1,2

(1東京農工大学大学院工学府機械システム工学専攻,2東京農工大学工学研究院先端機械シ ステム部門)

16:20-16:40 コーヒーブレイク

16:40-17:10 一般 11-11

混雑を考慮した鉄道通勤行動の mean field game モデル 石井諒太郎,渡辺樹,豊泉洋

(早稲田大学大学院基幹理工学研究科数学応用数理専攻)

17:10-17:40 一般 11-12
動的モード分解を用いた集団運動変化点の検出
猪股能成<sup>1</sup>,高見利也<sup>2</sup>
(<sup>1</sup>大分大学大学院工学研究科,<sup>2</sup>大分大学理工学部)

17:40 - 17:50

あいさつ

## 目次

| 生物進化の渋滞モデルと種個体数分布1<br>時田恵一郎, 佐藤純                                                               |
|------------------------------------------------------------------------------------------------|
| "The effect of inflow rate and conflict around the exit on evacuation efficiency"              |
| "Fundamental diagrams for heterogeneous traffic and their applications"9<br>K. Ramachandra Rao |
| COVID-19 の数理モデル解析13<br>稲葉寿                                                                     |
| 感染症封じ込めと社会総コスト最小化を両立するための Dynamic vaccination の特性解析<br>15                                      |
| 立川雄一, 谷本 潤                                                                                     |
| SIR ダイナミクスにおける感染率の定義の違いが最終感染者サイズに及ぼす影響19<br>内海忍,谷本潤                                            |
| 外出人数と COVID-19 実効再生産数の Scaling 関係による人-人接触項の検証23<br>島田尚                                         |
| 関西圏における COVID-19 の感染拡大率と外出人数の関係について27<br>黒田大地,島田尚                                              |
| 周回方向制限による対面時間の削減効果について31<br>川口寿裕                                                               |
| Multi-Layer モデルにおける待ち伏せ型捕食者の空間パターン形成                                                           |
| リーダー細胞に誘導される集団細胞回転                                                                             |

| 1次元交通流におけるエントロピーの定式化と相互情報量を利用したメタ安定状態の検知                  |
|-----------------------------------------------------------|
|                                                           |
| 3種類の速度帯に属する歩行者の2レーン上におけるシミュレーション47<br>青木隆広,藤田旭洋,柳澤大地,西成活裕 |
| ASEPに対応する可積分系の数理構造51<br>石黒裕樹,佐藤純,西成活裕                     |
| 樟脳型自己駆動粒子モデル55<br>大澤智興                                    |
| 非線形感覚運動写像ロボットの対面流 - 1 方向走行流への転移と流量のコース幅依存性 -              |
| 59                                                        |
|                                                           |
|                                                           |
|                                                           |
|                                                           |

## 生物進化の渋滞モデルと種個体数分布

時田恵一郎<sup>1</sup>, 佐藤純<sup>2</sup>

<sup>1</sup> 名古屋大学 情報学研究科 複雑系科学専攻 <sup>2</sup> お茶の水女子大学 ソフトマター教育研究センター

#### 概要

吸脱着つき非対称単純排他過程 (Asymmetric Simple Exclusion Process with Langmuir Kinetics: ASEP-LK) [1, 2] を1次元ニッチ空間上における遺伝子群の進化モデルとみなし、その定常状態における「渋滞の長さ分布」の厳密解を得たので報告する。これは、中立モデル [3, 4, 5]、ランダム群集モデル [6, 7, 8, 9] に次ぐ、現実的な多種進化ダイナミクスにもとづく種個体数分布が解析的に得られた第3の例である。

## A Traffic Jam Model of Biological Evolution and Species Abundance Distribution

## Kei Tokita<sup>1</sup>, Jun Sato<sup>2</sup>

<sup>1</sup> Department of Complex Systems Science Graduate School of Informatics, Nagoya University
<sup>2</sup> Center for Soft Matter Education and Research, Ochanomizu University

#### Abstract

We studied the asymmetric simple exclusion process with Langmuir kinetics (ASEP-LK) [1, 2] as an evolutionary model for genetic populations on a 1D niche space, and we obtained an exact solution for the "length distribution of traffic jam" in its steady state. This is the third example of the analytically-obtained species abundance distribution based on realistic multi-species evolutionary dynamics, following the neutral model [3, 4, 5] and the random community model [5, 6, 7, 8, 9].

## 1 生態群集の種個体数分布

様々な生態系における各生物種の個体数の分布を 調べると、特徴的な種多様性のパターン(種個体数 分布: Species abundance distribution: SAD や種数 面積関係: Species-area relations: SAR)が普遍的 に観測される。特に、SADを特徴づけるメカニズム の解明は、「前世紀の生態学が遺した未解明問題」の ひとつとされ [10]、生物多様性の保全とその持続的 な利用に資することが期待されている。

現実の生態系における SAD もしくはそれと等価 なランクーアバンダンス関係(Rank-abundance relations: RAR)が単純な関数にあてはまることを初 めて発見したのは、ウニの発生などで知られる東北 帝国大学の元村勲である。元村は同僚の動物生態学 者宮地伝三郎が湖などで取得したデータを解析し、 等比級数則を発見した [11]。その後、Fisher が対数 級数則 [12]、MacArthur が折れ棒モデル(連続極限 で指数型 SAD に対応)[13]、Preston が対数正規則 [14] を報告している。それらの統計モデルやそれら と SAR との関係については、May の総説 [15] が詳 しい。干潟などで観測されるベキ型(ロングテール) の SAD と SAR の関係については入江と時田が変換 公式を見出し、Zipf の法則(傾きが –1 の RAR)が ある種の相転移点上で実現されることを示した [16]。 一方、現実的な多種個体群進化ダイナミクスにも とづく、SADやRARの各種パラメータ依存性が理 論的に調べられてきた。Hubbell は集団遺伝学にお ける中立理論をマクロな生態群集に適用・拡張した 中立モデルを提案し[3]、集団遺伝学において確立し た確率過程(合祖過程 [17])の理論やマスター方程 式などの非平衡統計力学的手法が用いられた結果、 「ゼロサム多項分布」と呼ばれる SAD の厳密解が得 られている [4,5]。

中立モデルは同じニッチを奪い合う競争的な群集 のみに適用可能だが、時田らはスピングラス理論な どのランダム系の統計力学の方法を多種個体群進化 ダイナミクスの方程式(レプリケーター方程式)に 適用し、競争だけでなく、捕食関係や相利共生関係 なども含む複雑な生態ネットワークにおける SAD や RAR の各種パラメータ依存性(系の生産性、種 間相互作用の対称性や次数、資源の分布や時間変動 など)を解析的に明らかにしてきた [6, 7, 5, 8, 9]。

以下では、佐藤と西成による吸脱着つき非対称単 純排他過程(Asymmetric Simple Exclusion Process with Langmuir Kinetics: ASEP-LK)[1, 2] を 1 次 元ニッチ空間上における遺伝子群の進化モデルとみ なし、その定常状態における「渋滞の長さ(クラス ター)」を各種の個体数として、クラスターサイズ 分布を SAD と解釈する新しいモデルを提案する。

## 2 進化の ASEP-LK モデル

ここでは、生態学的ニッチ(セル)が1次元状に連 なっていて、個体群を構成する遺伝子群がそのセル を占有しながら変異を通じてニッチ空間を拡散して いく状況を考える。一般には、生態学的ニッチは高 次元の形質空間中で定義されるが、集団遺伝学にお いて主に1次元モデル(飛び石モデル[18,19])が研 究されてきたことや,最近でもインフルエンザウィ ルスの系統樹が1次元的であること[20,21]が報告 されていることなどから、ここでは1次元の場合を 考える。さらに,山の高度や,海や湖の水深に応じ て異なる種が分布しているので(垂直分布),各セ ルをそのような各高度や水深度ごとのニッチとみな せる可能性がある.

非対称単純排他過程 (Asymmetric Simple Exclusion Process = ASEP) とは、一次元の格子上を排 除体積効果を持った粒子が左右非対称なレートで拡 散していくという確率過程模型である。時間発展は 連続時間とし、微小時間 dt の間に確率 dt で右に、



図 1: 進化の ASEP-LK モデル

確率 qdt ( $0 \le q \le 1$ ) で左にホップするとする。た だし、排除体積効果があって、右 (左) に既に粒子が いる場合には右 (左) へのホッピングは起こらない。 系左端での流入率を  $\alpha$ 、右端での流出率を  $\beta$  とし、  $q \le 1$  より全体として左から右への流れを想定して いる。この模型は行列積表示 [22]、直交多項式 [23]、 ベーテ仮設 [24] 等を用いた厳密な解析が可能であり、 かつ境界における粒子の流出入レートによる渋滞相 と自由相の相分離や衝撃波のダイナミクスなど、興 味深い非平衡物理現象を記述する。一方、閉じた境 界条件の場合には、系は  $U_q(\mathfrak{sl}_2)$ の対称性を獲得し、 それを用いて定常状態の構成、粒子密度分布、相関 関数が厳密に議論できる [25]。

今回我々は、ASEP に吸脱着の効果 [26] を取り入 れた模型を取り扱う。系は U<sub>q</sub>(sl<sub>2</sub>)の対称性を失い、 粒子の出入りによって粒子数も保存しなくなる。こ の場合にも、定常状態の厳密な取り扱いが可能であ る [1, 2]。特にサイト数 N の周期境界の場合には、 定常状態は

$$|S\rangle = \frac{1}{(1+\gamma)^N} \sum_{n=0}^N \binom{N}{n} \gamma^n |S_n\rangle \tag{1}$$

と書ける。ここで、 $|S_n\rangle$ は粒子数がnの吸脱着がな い場合の定常状態であり、n粒子のあらゆる配置が 等確率 $\binom{N}{n}^{-1}$ で現れる確率的状態である。また、吸 着と脱着の比を $\gamma := \omega_a/\omega_d$ とした。

ここでは、上記の吸脱着つき ASEP の粒子を、セ ル(生態学的ニッチ)を占める生物の遺伝子群とみ なす。この場合、系左端での流入率αは原初的な遺 伝子群の移入率に相当し、右端での流出率βはその 系統末端の絶滅率とみなす。あるセルを占める遺伝 子群は、右(左)隣のセルが空いていない限り、そ こに変異(移動)することはできない。連続したセ ルを占める遺伝子群(クラスター)をひとつの種と みなし、クラスターサイズをその種の個体数(に比 例する量)とみなす。ここでの ASEP の時間スケー ルは、各セルの間を生物が物理的に移動する時間ス ケールではなく,遺伝子群が変異によって形質空間 中を拡散する時間スケールである.

図1における、吸着率 ω<sub>a</sub> は系の外からの遺伝子 群の移入率、脱着率 ω<sub>d</sub> はその遺伝子群の絶滅率に 相当する。脱着によるクラスター内部のセルを占め る遺伝子群の絶滅は、そのクラスターが2つの種に 分かれること、すなわち分断化淘汰とみなす。逆に, 吸着による異なる2つのクラスターの融合は,種の 交雑を通じた遺伝子群の交流チャネルの発生と考え る.分断化淘汰も交雑も現実の生態系で日常的に起 こっている.このような進化モデルをここでは「進 化の ASEP-LK モデル」と呼ぶことにする。

進化の ASEP-LK モデルは、連続する遺伝子群の クラスターにより種を定義する1次元中立モデルと みなすこともできる。つまり,隣り合う種の間にだ け競争があり,さらに種内では排他過程のためより 強い競争が生じる.このことはダーウィンを始めと する生態学者の知見,すなわち最も強い競争は種内 競争であるということとも整合する.

今回我々は、吸脱着(つき/なし)ASEPの厳密 な定常状態を用いて、クラスターサイズ分布の(移 入率/絶滅率) $\gamma = \omega_a/\omega_d$ やセルを占める遺伝子群 の総数(ASEP-LK における総粒子数)nの依存性 を厳密に計算した。これは、サイト数N、粒子数nのASEP に対するサイズkのクラスターサイズ分布 の結果 [27]

$$P_n(k) = \frac{\binom{N-k-2}{n-k}}{\binom{N-2}{n-1}}$$
(2)

を ASEP-LK に拡張したものであり、

$$P_{LK}(k) = \frac{1}{(1+\gamma)^N} \sum_{n=k}^N \binom{N}{n} \gamma^n P_n(k) \qquad (3)$$

で与えられる。これが進化の ASEP-LK モデルにお ける SAD を与える公式である。

## 3 結果

結果の一部を図2に示す。図2の上図は、セル数 N = 100の場合の、吸脱着つきASEP(ASEP-LK) におけるクラスターサイズ分布(SAD)の(移入率 /絶滅率)γ依存性である。パラメータγによらず 直線となり、指数型のSADになっていることがわか る。このことから、進化のASEP-LKモデルは、ク ラスターの伸び縮み(個体数の増減)を含む、ダイ ナミックな折れ棒モデル(指数分布を予測)になっ ていると考えることができる。この場合、(移入率/ 絶滅率)が高いほど長いテールをもつ SAD となり、 熱帯雨林やサンゴ礁などの種の入れ替わりの激しい 生態系で観測されるものに近い。

図 2 の下図は、同じくセル数 N = 100 の場合の、 吸脱着なし ASEP におけるクラスターサイズ分布 (SAD)の n 依存性を示す。吸脱着なし、すなわち 個体群の移入や絶滅がないと SAD のテールはより 短くなり(長い「渋滞」がなくなる)、ガウス分布 に近づく。これは生産性が低く、種の入れ替わりの 少ない、高山や極地、北方樹林などにみられる SAD に近い。

## 4 まとめ

吸脱着つき ASEP(ASEP-LK)を、遺伝子群の変 異や絶滅、分断淘汰,交雑を含む1次元ニッチ空間上 の進化ダイナミクスとみなし、SADの厳密解を計算 することに成功した。得られた SADのパラメータ依 存性は、現実の生態系で観察される SADのパラメー タ依存性と矛盾しないようにみえる。特に、進化の ASEP-LK モデルは、古典的な MacArthur の折れ棒 モデルと同様に指数分布を予測し、現実的な多種進 化ダイナミクスにもとづく、ダイナミックな折れ棒 モデルと考えることができる。進化の ASEP-LK モ デルは、巨大クラスター(個体数大の種、長い渋滞) が出現しやすいことから、インフルエンザウィルス 擬種生態系などの1次元的なニッチ空間をもつ生態 系における「進化的渋滞」の発生を予測する。

## 謝辞

本研究のきっかけとなった Pulkkinen と Merikoski の論文の情報をご教示くださった東京大学・西成活 裕氏に感謝申し上げます。

## 参考文献

- Sato, J., Nishinari, K., Phys. Rev. E 93 042113 (2016).
- [2] Sato, J., Nishinari, K., Phys. Rev. E 97 032135 (2018).
- [3] Hubbell, S. P., Unified Neutral Theory of Biodiversity and Biogeography, Princeton University Press, Princeton, USA (2001) (「群集生態 学:生物多様性学と生物地理学の統一中立理論」



図 2: SAD (クラスターサイズ分布)

(平尾聡秀・島谷健一郎・村上正志 訳 2003年)文一総合出版、東京).

- [4] Etienne, R.S., Alonso D., J. Stat. Phys. 128, 485-510 (2007).
- [5] 時田恵一郎、「第6章中立モデルとランダム群 集モデル」於「生物間ネットワークを紐とく」 (大串隆之・近藤倫生・難波利幸 編 2009 年)、京都大学学術出版会、京都)
- [6] Tokita, K., Phys. Rev. Lett. 93 178102 (2004).
- [7] Yoshino, Y., Galla, T., Tokita, K., Phys. Rev. E 78 031924 (2008).
- [8] Obuchi, T., Kabashima, Y., Tokita, K., Phys. Rev. E 94 022312 (2016).
- [9] Obuchi, T., Kabashima, Y., Tokita, K., J. Stat. Mech. 113502 (2016).

- [10] May, R.M., Philos. Trans. R. Soc. London B 264, 1951-1959 (1999).
- [11] Motomura, I., Zool. Mag. (Tokyo) 44, 379-383 (1932).
- [12] Corbet, A.S., Fisher, R. A., Williams, C.B., J. Anim. Ecol. **12** (1943).
- [13] MacArthur, R.H., Am. Nat. 94 25-36 (1960).
- [14] Preston, F.W., Ecology **43** 410-432 (1962).
- [15] May, R.M., "Patterns of species abundance and diversity" 81-120, in *Ecology and Evolution of Communities*, Ed. Cody, M.L. Diamond, J.M., Belknap, Cambridge (1975).
- [16] Irie, H., Tokita, K., Int. J. Biomath. 5 1260114 (2012).
- [17] Kingman, J. F. C., Genetics **156** 1461-1463 (2000).
- [18] Kimura, M., Weiss, G. H., Genetics 49 561-576 (1964).
- [19] Sasaki, A., J. theor. Biol. **168** 291-308 (1994).
- [20] Andreason, V., Sasaki, A., Theor. Popul. Biol. 70, 164-173 (2006).
- [21] 佐々木顕, 日本数理生物学会ニュースレター, 70 10-13 (2013).
- [22] Blythe, R.A., Evans, M.R., J. Phys. A: Math. Theor. 40 R333-R441 (2007).
- [23] Sasamoto T., J. Phys. A: Math. Gen. **32** 7109-7131 (1999).
- [24] Golinelli O., Mallick, K., J. Phys. A: Math. Gen. 39 12679-12705 (2006).
- [25] Sandow S., Schütz G., Europhys. Lett. 26 7-12 (1994).
- [26] Parmegianni A., Franosh T., E. Frey, Phys. Rev. Lett. **90** 086601 (2003).
- [27] Pulkkinen, O., Merikoski J., Phys. Rev. E 64, 056114 (2001).

## The effect of inflow rate and conflict around the exit on evacuation efficiency

Geng Cui<sup>1</sup>, Daichi Yanagisawa<sup>2</sup>, Katsuhiro Nishinari<sup>2</sup>

 $^1$ Research Center for Advanced Science and Technology, The University of Tokyo $^2$ Department of Aeronautics and Astronautics School of Engineering, The University of Tokyo

#### Abstract

In this paper, a cluster approximation method based on the floor field model is proposed to analyze the effect of inflow rate and conflicts around the exit during an evacuation process. The conflicts have been taken into account by 2 different approaches: the friction parameter and the friction function. It has been observed that despite the difference of conflict level, there always exists an optimal inflow rate. The calculation results could be considered as the verification of the 'faster is slower' effect. Besides theoretical analysis, we also conducted simulation to validate our model. We found that through adjusting the inflow rate to appropriate value, the evacuation time in all the conflict regime could be approximated with satisfactory accuracy.

#### 1 Introduction

Pedestrian evacuation is vigorously researched over the last decades. In addition to a lot of evacuation experiments conducted to investigate complex behaviors of pedestrians during evacuation process from a perspective of both psychology and physiology [1] [2], various kinds of microscopic models, which enable computer simulation based studies, are developed. Floor field cellular-automata model is a famous decision-based model, it is based on cells in 2 dimensional space and discrete in space, time and the state variables [3]. Despite its simplicity, floor field model could reproduce various complicated evacuation dynamics, thus it is well studied and extended in recent years.

An important phenomenon in evacuation is the so called 'faster-is-slower' effect, which refers to the phenomenon that as individual pushes harder to escape through an exit, an increasement of the total evacuation time can be achieved. Besides the experimental verification, researchers also incorporated the friction parameter [4] and the friction function [5] to reproduce such phenomenon via floor field model simulation. The friction parameter stands for the clogging and sticking effects between evacuees, it describes the probability an evacuee could not proceed to its desired position when engaged in a conflict with other evacuees. Friction function accounts for the fact that the larger the number of evacuees engaged in a conflict, the stronger the competition will be, it treats the probability that all the movements are denied as function of the number of evacuees.

In this research, we investigated the evacuation dynamics near the exit through theoretical analysis and simulation. Because of the complexity of 2 dimensionality, unlike vehicle traffic which has been well theoretically studied by extending the 1 dimensional asymmetric simple exclusion process, only in a very limited number of evacuation researches theoretical analysis has been conducted. This paper is organized as follows. In Sec. 2, we briefly review the floor field model along with the friction parameter and the friction function. Subsequently we propose the cluster approximation method in Sec. 3, and compare the simulation results with the theoretical calculation. Finally, Sec. 4 is devoted to summary and discussion.

### 2 Floor Field Model and conflict resolution

#### 2.1 Floor Field

As the focus of this research is the evacuation dynamics near the exit, we consider a square room with only 1 exit. The room is divided into 2 dimensional cells, for each cell, only 2 conditions are available: empty or occupied by an evacuee. At each time step, an evacue could choose to proceed to a Von Neumann neighbor cell, or stay in its current place (Fig. 1). The decision-making of evacuees is determined by 2 floor fields: the static floor field and the dynamic floor field. The static floor field describes the shortest distance from the exit, as shown in Fig. 1. The dynamic floor field is a bionics-inspired approach, it could be considered as the footprints left by pedestrians, and reflects that under emergency, human-beings are likely to lose their minds and just follow the footsteps of others. By adopting dynamic floor field, the long-ranged interaction among evacuees is mimicked to localranged one. The probability an evacuee chooses the cell (i, j) to move into is determined by the following equations.

$$p_{ij} = N\xi_{ij}(1 - n_{ij})\exp(-k_s S_{ij} + k_d D_{ij}), \quad (1)$$

$$N = \left[\sum_{(i,j)} \xi_{ij} (1 - n_{ij}) \exp(-k_s S_{ij} + k_d D_{ij})\right]^{-1} (2)$$



Fig.1: (a) Target cells for an agent, only the Von Neumann neighbor cells are available. (b) Static floor field of a  $5 \times 5$  room. The exit cell is marked as green. The number in each cell represents the Manhattan distance from the exit cell.



Fig.2: A schematic view of how the friction parameter resolves conflict. The movements of two pedestrians are denied with probability  $\mu$ , otherwise a pedestrian will be randomly selected and able to proceed.

$$\xi_{ij} = \begin{cases} 0, & \text{for obstacle or wall cells} \\ 1, & \text{otherwise} \end{cases}$$
(3)

Here,  $k_s$  and  $k_d$  are sensitive parameters of the static floor field and the dynamic floor field, respectively.  $n_{ij} \in 0, 1$  refers to the occupation number. As in this research we only consider the evacuation from a simple room, we suggest that all the evacuees have a good knowledge of the location of the exit, thus the effect of the dynamic floor field is ignored. For simplicity we set  $k_s$  large enough to ensure the effect of static floor field dominates, i.e.,  $k_s = 10, k_d = 0$ , which corresponds to the ordered regime in Ref. [3].

#### 2.2 Friction Parameter and Friction Function

Under parallel update, a conflict occurs when more than 2 agents attempt to move to a same cell. In order to quantitatively describe the level of the conflict, the friction parameter  $\mu \in [0, 1]$ , which means the probability that all the movements are denied due to friction and clogging effect (Fig. 2), is proposed. Note that through adopting  $\mu = 0$  we recover the studies in Ref. [3].

The friction function originates from the assumption that the more agents competing for the chance to move, the stronger the conflict. For example, the impact of friction is stronger when 3 pedestrians are involved in the conflict compared to 2 pedestrians. Yanagisawa et al. conducted simulation to show that most conflicts at the exit cell are among 3 pedestrians [5]. Thus, it is not appropriate to consider only 1 kind of conflict, as the friction parameter does.

The friction function, which takes the number of pedestrians k into consideration, is expressed as follows:

$$\phi_{\zeta}(k) = 1 - (1 - \zeta)^k - k\zeta(1 - \zeta)^{k-1}$$
(4)

where  $\phi_{\zeta}(k)$  represents the probability the movements of all the involved pedestrians are denied.  $\zeta$ 



Fig.3: A schematic view of how the friction function resolves conflict. Depending on the strategies of all the involved agents in a conflict, whether the movement is denied is determined.



Fig.4: (a) Illustration of notations.  $\alpha$  and  $\beta$  represent the transition probability to the exit cell and the transition probability getting out of the room, respectively.  $\gamma$  is the probability an empty neighbor cell be occupied in the next time step. (b) A schematic view of the configuration of exit cell and its Von Neumann neighbor cells. There are  $2^4 = 16$  kinds of configurations, which are divided into 8 classes.  $P_i$  represents the probability that at a timestep the configuration belongs to class *i*. Notice that the only difference between the left 4 classes and the right 4 classes is whether the exit cell is occupied.

is an aggressive parameter, which is the probability that a pedestrian does not give ways to others. As shown in Fig. 3, it is supposed that if 2 or more than 2 involved agents do not give ways to others, all the movements will be denied. In other words, only in 2 situations a standstill will not happen: (1) All the agents give ways to others, in this situation an agent will be randomly selected and able to proceed. (2) Only 1 agent does not give ways to others, thus this agent will win the conflict. These 2 situations are expressed by 2 terms:  $(1-\zeta)^k$  and  $k\zeta(1-\zeta)^{k-1}$ , respectively.

### 3 Simulation and theoretical analysis

#### 3.1 Cluster approximation

In this section, we propose a cluster approximation method to computes the flux of evacuees over exit cell. Since most of the conflicts occur near the exit, we only consider the exit cell and its 3 Von Neumann neighbor cells. The configurations of the 4 cells are shown in Fig. 4.

First we adopt the friction parameter to solve conflicts. We define  $P_i(t)$  the probability finding class *i* at time *t*, denote the permutation  $\frac{k!}{(n-k)!}$  as  $\binom{n}{k}$ , and then take the calculation of  $P_2$  as an

example:

$$P_{2}(t+1) = P_{1}(t) {\binom{3}{1}} \gamma (1-\gamma)^{2} + P_{2}(t)(1-\alpha)(1-\gamma)^{2} + P_{5}(t)\beta {\binom{3}{1}} \gamma (1-\gamma)^{2} + P_{6}(t)\beta (1-\gamma)^{2}$$
(5)

As shown in Fig. 5, the transition into class 2 at

time t + 1 is possible for 4 classes at time t: class 1, class 2, class 5 and class 6. The transition probability of these 4 classes are:  $\binom{3}{1}\gamma(1-\gamma)^2$ ,  $(1-\alpha)(1-\gamma)^2$ ,  $\beta\binom{3}{1}\gamma(1-\gamma)^2$  and  $\beta(1-\gamma)^2$ , respectively.

Similarly, the probability of other classes could be calculated. Furthermore, the master equation of the cluster is listed as follows:

$$\begin{bmatrix} P_1(t+1) \\ P_2(t+1) \\ P_3(t+1) \\ P_5(t+1) \\ P_6(t+1) \\ P_6(t+1) \\ P_8(t+1) \end{bmatrix} = \begin{bmatrix} (1-\gamma)^3 & 0 & 0 & \beta(1-\gamma)^3 & 0 & 0 & 0 \\ 3\gamma(1-\gamma)^2 & (1-\alpha)\gamma(1-\gamma) & 2 & 0 & 0 & 3\beta\gamma(1-\gamma) & \beta(1-\gamma) & 0 & 0 \\ 3\gamma^2(1-\gamma) & 2(1-\alpha)\gamma(1-\gamma) & a_{33} & 0 & 3\beta\gamma^2(1-\gamma) & 2\beta\gamma(1-\gamma) & \beta(1-\gamma) & 0 \\ \gamma^3 & (1-\alpha)\gamma^2 & a_{43} & a_{44} & \beta\gamma^3 & \beta\gamma^2 & \beta\gamma & \beta \\ 0 & \alpha(1-\gamma)^2 & 0 & 0 & (1-\beta)(1-\gamma)^3 & 0 & 0 & 0 \\ 0 & 2\alpha\gamma(1-\gamma) & a_{63} & 0 & 3(1-\beta)\gamma(1-\gamma)^2 & (1-\beta)(1-\gamma)^2 & 0 & 0 \\ 0 & \alpha\gamma^2 & a_{73} & a_{74} & (1-\beta)\gamma^3(1-\gamma) & 2(1-\beta)\gamma(1-\gamma) & (1-\beta)(1-\gamma) & 0 \\ 0 & 0 & 0 & 0 & (1-\beta)\gamma^3 & (1-\beta)\gamma^2 & (1-\beta)\gamma & 1-\beta \end{bmatrix} \times \begin{bmatrix} P_1(t) \\ P_2(t) \\ P_3(t) \\ P_6(t) \\ P_7(t) \\ P_8(t) \end{bmatrix}$$

where  $a_{33} = (1-\gamma)(\mu_2\alpha^2 + (1-\alpha)^2), a_{43} = \gamma(\mu_2\alpha^2 + (1-\alpha)^2), a_{44} = \mu_3\alpha^3 + 3\alpha^2(1-\alpha)\mu_2 + (1-\alpha)^3, a_{63} = (1-\gamma)(2\alpha(1-\alpha) + \alpha^2(1-\mu_2), a_{73} = \gamma(\alpha^2(1-\mu_2) + 2\alpha(1-\alpha)), a_{74} = (1-\mu_3)\alpha^3 + 3\alpha^2(1-\alpha)(1-\mu_2) + 3\alpha(1-\alpha)^2.$ 



Fig.5: A schematic view of the calculation of  $P_2(t+1)$ , the color of the relevant part in the graph and the formula are corresponding.

Adding the normalization condition

$$\sum_{i=1}^{8} P_i(t) = 1,$$
(7)

the flux (represented by Q) in the stationary state  $(t \to \infty)$  could be calculated by following equation. For configurations 5, 6, 7 and 8, the agent standing in the exit cell has a probability of  $\beta$  egressing from the room in the next time step.

$$Q = \beta [P_5(t) + P_6(t) + P_7(t) + P_8(t)]$$
 (8)

For simplicity we set  $\alpha = 1, \beta = 1$ . First we validate our model by 3 simple cases, each represents a very special situation where the flux could be easily calculated:

(1)  $\gamma = 0$ . Because that there is no inflow, whatever the value of  $\mu$ , we get  $P_1 = 1, P_i = 0 (i = 2, 3, ..., 8)$ . Apparently the result is correct.

(2)  $\mu = 1$ . This situation leads to the result:  $P_4 = 1, P_i = 0$  (i = 1, 2, 3, 5, 6, 7, 8), which refers to a complete deadlock condition.

(3)  $\gamma = 1$ . We get  $Q = \frac{1-\mu}{2-\mu}$ , which is in accordance with the results in previous studies [4] [5]

[6].

The calculation result is shown in Fig. 6, from which one can see that as the friction effect being stronger (represented by a larger value of friction parameter  $\mu$ ), the optimal value of  $\gamma$  is declining. We also take  $\mu$  as fixed variable, and show flux as function of  $\gamma$ . The result is in accordance with



Fig.6: Calculation results based on the friction parameter. (a) Flux from the exit as function of  $\mu$  and  $\gamma$ , the high flux regime is represented by warm colors. (b) Flux from the exit as function of  $\gamma$  for different conflict levels.



Fig.7: Calculation results based on the friction function. The difference from Fig. 6 is that the parameter describing the conflict level is changed to  $\zeta$  rather than  $\mu$ . (a) Flux from the exit as function of  $\mu$  and  $\zeta$ . (b) Flux from the exit as function of  $\gamma$  for different conflict levels.

the previous work [6], in which the pedestrian flow through multiple bottlenecks is simulated. It has been demonstrated that when the cluster merges faster around the final exit, the overall flow rate declines thus leads to longer evacuation time. According to our result, the final outflow decreases monotonically after the critical point of inflow rate (Fig. 6).

We also present the calculation result based on the friction function, which is easily realized by replacing  $\mu_2$  in equation (6) by  $1 - (1-\zeta)^2 - 2\zeta(1-\zeta)$ and  $\mu_3$  by  $1 - (1-\zeta)^3 - 3\zeta(1-\zeta)^2$ . The results are shown in Fig. 7.

## 3.2 Comparison between simulation and theoretical analysis

In the following we present the simulation results to validate the cluster approximation method. In our simulations a representative set of parameters in the so called *ordered regime*:  $k_s = 10, k_d =$  $0, \alpha = 0, \sigma = 0$  is adopted (according to Ref. [3]). We consider a grid of size  $63 \times 63$  sites with an exit of one cell in the middle of the upper boundary. All the agents are randomly distributed in the room initially.

We want to stress that it is not in this research at the first time the flux over exit based on the floor field model is theoretically analyzed. The originality of our work is that the parameter  $\gamma$  is not just a fixed value, to the best of our knowledge, its value is fixed in all the previous works [4] [5] [6]. It is reported in Ref. [4] and Ref. [6] that such setup gives satisfactory agreement for weak friction regime:  $\mu \leq 0.6$ , but in the region of strong friction:  $\mu \ge 0.6$  large deviation can be observed. From Fig. 6 one can clearly observe that the flux takes local minimum value when  $\gamma = 1$ , that is to say, the reason of the deviation is the underestimate of the flux when  $\gamma = 1$  is adopted. What is more, the decline of flux from the optimal point is more obvious as  $\mu$  grows, thus the deviation in strong friction regime is further enlarged.

The comparison of theoretical analysis and simulation is presented in Fig. 8. Five different values of  $\gamma : 0.2, 0.3, 0.4, 0.5, 0.6$  are adopted to calculate the evacuation time. We do not consider the regime:  $\gamma \geq 0.6$  because in which the curve slopes in both Fig. 6 and Fig. 7 are not so steep, indicating there may not be huge differences in the calculation results. One can see from Fig. 8 that as  $\gamma$  grows, there is a tendency the theoretical results better fit the weak friction regime:  $\mu \leq 0.6(\zeta \leq 0.6)$ , but the deviation in the strong friction regime:  $\mu \geq 0.6(\zeta \geq 0.6)$  becomes larger. We assume that a moderate value of  $\gamma$  such as 0.3 or 0.4 would minimize the total deviation.

#### 4 Conclusion

In this paper, we have introduced a new method to approximate the outflow from a single cell based on the floor field model. Two different approaches to solve the conflicts are considered and the theoretical results are presented accordingly. We found that despite the difference of conflict level, an optimal inflow rate, which would maximize the overall flux, always exists. The value of the optimal inflow rate tend to decrease as the conflict grows stronger.

We conducted simulations and applied the cluster approximation approach to calculate the evacuation time. We found that for both friction parameter and friction function based simulation, in order to give satisfactory accuracy in strong friction regime, a relatively lower value of the inflow rate should be adopted. The investigation of the inflow rate in stationary state during evacuation will be our future work.



(b)



#### 5 Acknowledgement

This work was supported by JST-Mirai Program Grant Number JPMJMI20D1, Japan.

#### References

- A. Garcimartín, I. Zuriguel, J.M. Pastor, C. Martín-Gómez and D.R. Parisi, Transportation Research Procedia 2 (2014) 760.
- [2] M. Haghani, M. Sarvi and Z. Shahhoseini, Transportation Research Part A 122 (2019) 51
- [3] <sup>51</sup>. Kirchner and A. Schadschneider, Physica A **312** (2002) 260.
- [4] A. Kirchner, K. Nishinari and A. Schadschneider, Phys. Rev. E 67 (2003) 5.
- [5] D. Yanagisawa, A. Kimura, A. Tomoeda, R. Nishi, Y. Suma, K. Ohtsuka and K. Nishinari, Phys. Rev. E 80 (2009) 3.
  [6] T. Ezaki, D. Yanagisawa and K. Nishinari,
- [6] T. Ezaki, D. Yanagisawa and K. Nishinari, Phys. Rev. E 86 (2012) 2.

# Fundamental diagrams for heterogeneous traffic and their applications

K. Ramachandra Rao

Professor, Department of Civil Engineering and Transportation Research and Injury Prevention Programme (TRIPP), IIT Delhi, Hauz Khas, New Delhi, India Email: rrkalaga@civil.iitd.ac.in

## Abstract

This paper explores on how fundamental diagrams have evolved over a period of time. Fluid flow analogies are used to depict the differences and highlighting the behaviour of vehicles. The heterogeneity of vehicles is also discussed along with the underlying fundamental diagrams.

Keywords: fundamental diagrams, heterogeneity, traffic states.

## 1. INTRODUCTION

In traffic flow theory the representation of traffic state is done through the fundamental characteristics speed, flow and density. These characteristics however cannot describe the traffic state entirely, as these variables can vary greatly depending on the type of observations made. Typically the observations on the traffic variables are achieved through a variety of sensors. They can be categorized as point, mobile and space sensors. Point sensors yield the observations that are corresponding to the cross-sectional data, while space sensor gives those over a short or long stretch of a road. Mobile sensors could give the position of an individual vehicle over time. As indicated earlier the relationship among the traffic flow characteristics can give insights into the dynamics of the traffic state and its evolution over space and time. Thus the models and the associated graphical depiction of the pairwise relationships of the traffic flow characteristics can be referred to as the fundamental diagrams (Ni, 2016). In the vehicular traffic, Greenshields postulation of the pairwise relationship between speed and density can be considered as the first fundamental diagram (FD) (Greenshields, 1935).

Given the variety of the traffic states that exist in different types of environments that involve multiple vehicle types, infrastructure and driver population leads us to the need of exploring fundamental diagrams in these conditions. The multiple vehicle types can include motorized two-wheelers, trucks, buses and motorized three-wheelers besides cars, leading us to heterogeneous traffic. Also with the advent of the autonomous vehicles would necessitate the revisiting of the FDs of the conventional human-driven vehicles (HVs) and connected and autonomous vehicles (CAVs). Some studies show interesting insights into the scatter aspects of the FDs with the increased penetration of CAVs (Zhou and Zhu, 2020). This paper tries to explore the evolution of the FDs and their applications to heterogeneous traffic conditions.

## 2. FUNDAMENTAL DIAGARM AND ITS EVOLUTION

The flow-density diagrams with steady state equilibrium of identical driver units can be called as fundamental diagram. Here the steady state refers to the stationarity of traffic. FDs describe the theoretical relation between density and flow in these conditions (Trieber and Kesting, 2013). Thus the equilibrium relationships are theoretical and can be described by unimodal functions

within certain limited range of independent variables. In the case of flow-density pair, flow as a unimodal function of density. Many researchers tried to define the properties of FDs both microscopic and macroscopic conditions. Kessels (2019) gives an excellent summary of the properties of the fundamental diagrams. Some of them are worth mentioning here. Before we plunge into these details it is important to understand the evolution of fundamental diagrams from the physical phenomenon such as flow of water through pipes and flow of granular media.

If one considers drivers choice of the speeds, the relationship between speed and density best describes this process. At low densities drivers have larger spacing and can choose speeds close to free flow, while during congested conditions the converse is true. Thus a non-decreasing function would fit this description very well. However, when this relationship is translated to flow versus density the relationship, it has an inflection point. Often the traffic flow draws heavily from fluid flow analogy, but here is the stark deviation from this analogy which is very well depicted in Figure 1.



Figure 1: Traffic and fluid (water) analogy (a) Flow-density curve (b) granular/agents vs. water flow through constrained exits (similar to bottlenecks) (Kessels, 2019)

The critical point that needs to be highlighted here is the inflection point, after increasing portion in Fig. 1(a). This is clearly depicted in Fig 1 (b) where granular media/agents passing through constriction as the flow goes past the peak, the throughput decreases which are in contrast to the flow of water which is non-decreasing after the peak. In the next section some idea of the multiple vehicle types and the related heterogeneity is discussed.

## **3. HETEROGENEITY**

Heterogeneous traffic is a common sight in many Asian countries, which predominantly comprises of motorized two-wheelers (MTW), and some extent motorized three-wheelers (MThW, tuk-tuks or auto-rickshaws) besides cars and heavy vehicles (HVs). Understanding the FDs when such traffic mix is prevalent offers interesting insights into the evolution of the traffic

phenomena over a range of densities (which are again defined in terms of passenger car equivalencies). In one of the recent studies by Gaddam and Rao (2020), the fundamental diagrams evolved show an interesting trend. It is observed that traffic flow and density increases with the increase of MTW proportion due to their smaller physical dimensions and shorter longitudinal headways maintained by them. In MTW only conditions, maximum flow values observed to be four times higher than that of cars only condition. However, if MTW proportion is less than 0.4, it has little effect on flow values when compared to that of cars only situation (where MTW proportion is zero). The concept of including the heterogeneity is also demonstrated by Chanut and Buisson (2003).



Figure 2: Effect of (a) MTW and (b) Heavy vehicle proportion on capacity of traffic flow

## 4. SUMMARY

It is important to explore the FDs evolution for a variety of traffic situations. This can lead to an in depth understanding of the underlying evolution of dynamic traffic phenomena.

## REFERENCES

- Chanut, S., and Buisson, C. (2003). Macroscopic Model and Its Numerical Solution for Two-Flow Mixed Traffic with Different Speeds and Lengths. *Transportation Research Record*, 1852(1), 209–219
- 2. Gaddam, H.K., Rao, K.R. (2020) A two-sided lateral gap continuum model and its numerical simulation for non-lane based heterogeneous traffic environment. *Journal of intelligent transportation systems* 24-6, 635–653
- 3. Greenshields, B.D. (1935) A study of traffic capacity. In: *Proceedings of the Highway Research Board*, Vol. 14. Highway Research Board, Washington, D.C..
- 4. Kessels, F. (2019) *Traffic flow modelling. Introduction to Traffic flow theory through a Genealogy of models.* Springer International Publishing AG.
- 5. Ni, D. (2016) *Traffic flow theory. Characteristics, experimental methods and numerical techniques.* Butterworth Heienemann.Oxford.
- 6. Treiber, M., Kesting, A. (2013) *Traffic flow dynamics. Data, models and simulation.* Springer-Verlag, Berlin Heidelberg.
- 7. Zhou, J. Zhu, F. (2020) Modeling the fundamental diagram of mixed human-driven and connected automated vehicles. *Transportation Research Part C* 115 (2020) 102614.

## COVID-19の数理モデル解析

### 稲葉 寿

#### 東京大学大学院数理科学研究科

#### 概要

本報告では COVID-19 に焦点をあてて,感染症流行予測と制御のための感染症数理モデルの 基礎的利用法とその問題点を報告する。はじめに基本再生産数の推定と緊急事態宣言の効果に 関する最近の研究を紹介する。ついで,無症候性感染モデルによって,社会距離拡大政策のも とでの発症者隔離の効果を,状態別再生産数の概念を用いて考察する。ついで大量検査と隔離 の効果をとりいれたモデルによって,実効再生産数による介入効果の定量化をおこなう。最後 に無症候性感染規模の推定問題を考える。

## Mathematical model analysis for COVID-19

## Hisashi Inaba

Graduate School of Mathematical Sciences The University of Tokyo

#### Abstract

In this talk, we focus on COVID-19 to discuss elementary applications and problems of mathematical model for infectious diseases for prediction and control of the epidemic. First, we introduce recent results for the estimate of the basic reproduction number and examine the effect of declaration of the state of emergency. Next, based on the asymptomatic transmission model and the state-reproduction number, we consider the effect of quarantine of symptomatic infecteds under the social distancing policy. Subsequently we construct a mathematical model to quantify the effect of massive testing and quarantine by using the effective reproduction number. Finally, we consider an estimation problem for the size of unobserved asymptomatic infecteds.

## 参考文献

- [1] H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer, (2017)
- [2] 稲葉 寿(編著),「感染症の数理モデル」増補改訂版, 培風館, (2020)
- [3] T. Kuniya, Prediction of the epidemic peak of coronavirus disease in Japan, 2020. J. Clin. Med. 9 (2020) 789.
- [4] T. Kuniya and H. Inaba, Possible effects of mixed prevention strategy for COVID-19 epidemic: massive testing, quarantine and social distancing. AIMS Public Health 7(3) (2020) 490.
- [5] T. Kuniya, Evaluation of the effect of the state of emergency for the first wave of COVID-19 in Japan. Infectious Disease Modelling 5 (2020) 580.

## 感染症封じ込めと社会総コスト最小化を両立するための Dynamic vaccination の特性解析

## 立川 雄一<sup>1</sup>, 谷本 潤<sup>1,2</sup>

## <sup>1</sup>九州大学 大学院総合理工学府 環境エネルギー工学専攻 <sup>2</sup>九州大学 総合理工学研究院 環境理工学部門

#### 概要

感染者発生直後から感染者の隣人に対しワクチン接種を施す Dynamic vaccination を,複雑ネットワーク上で行う Multi Agent Simulation モデルを構築した. ワクチンによる免疫獲得の確率性と感染者やその隣人を特定する情報ノイズの影響が Dynamic vaccination に与える影響を系統的に調べた. その結果,情報ノイズの影響は非常に小さく,対してワクチンの確率的有効性の影響は極めて大きいことが明らかとなった. 有効性の低いワクチンでは Dynamic vaccination により流行初期の封じ込めに失敗することになる. この欠点を補うために感染者の第2近傍の隣人にも一定割合でワクチン接種を施す方策を検討したところ,大感染を招く可能性は低減されず,費用対効果の減少により社会総コストが増加することがわかった.

# Analysis on *dynamic vaccination* to immediately confine an epidemic spreading and to simultaneously minimize the social cost

## Yuichi Tatsukawa<sup>1</sup>, Jun Tanimoto<sup>1,2</sup>

<sup>1</sup> Interdisciplinary Graduate School of Engineering Sciences, Kyushu University <sup>2</sup> Faculty of Engineering Sciences, Kyushu University

#### Abstract

We establish a multi agent simulation (MAS) model to emulate *dynamic vaccination* (DV) in which only direct neighbors of an infected agent are immunized by vaccination. The model takes account for the stochastic feature of vaccine's efficacy, and for the information noise to detect an infected agent as well as his neighbors. MAS reveals that although the information noise less significantly affects on how successfully DV confining a disease spreading, the vaccine efficacy does dominate it. In a nutshell, DV with a less reliable vaccine misses out opportunities of initial containment. The expanded intervention measure, where DV is also applied to some fraction of second neighbors of an infected agent, does not increase the probability of such initial containment, yet rather boosts the total social cost; the sum of vaccination cost and that of illness.

## 1. 緒言

理想的ワクチン接種方策として Alvarez-Zuzek らは Dynamic vaccination (以下, DV) を数理的に検討している[1]. DV のコンセプ トは,感染者が発生したら,その第 1 近傍隣 人に直ちにワクチン接種をして免疫化するこ とで,感染症の拡大を限局し,蔓延を回避す るものである.ワクチンにより完全免疫がも たらされるのならば DV により封じ込めが理 想的に達成される.が,実際には,Fig.1 に示 すようにワクチンの有効度は完全ではないた め,DV の包囲網を掻い潜って感染が拡大する 可能性があり,基盤グラフのトポロジーによっては(例えば supper-spreader となるハブが存在するような感染ネットワークでは)大感染に至る.ところで,DVで前提とされている感染者本人および彼の隣人を瞬時に捕捉することは可能だろうか?今次の COVID-19 感染拡大で観察された PCR 検査の意図的な忌避,過去の接触者履歴情報の開示拒否といったことが現実には起き得る.「自粛警察」や「夜の街クラスター」は社会問題にもなった.DV に準えていうと前者は感染エージェントの検出ノイズであり,後者は彼の隣人エージェントの

検出ノイズに相当する.本稿では,DVの初期 (\*1)封じ込めが可能となるか否かの特性に, ワクチンの確率性(後記する e もしくはηを意 味する),上記の2つの情報ノイズがどのよう な影響を付与するのかを multi agent simulation (以下, MAS)により検討した結果を報告す る.



**Fig.1** Dynamic Vaccination の概要. (a)DV により初期封 じ込めが成功する, (b)失敗する.

#### 2. モデル

有限の母集団 (サイズN = 10<sup>4</sup>) からなる基 盤社会ネットワーク上を SIR プロセス[2]に従 う感染症が伝搬する1シーズンのダイナミク スを想定する.エージェントは平均次数8  $(\langle k \rangle = 8) \oslash$  Barabási–Albert Scale Free[3] $\not O$ フ(以下, BA-SF) 上のノードに配置し, リン クは感染症が伝播する物理ネットワークを表 す. SIR プロセスでは S→I, I→R の推移率を 感染率β[person<sup>-1</sup> day<sup>-1</sup>],回復率γ[day<sup>-1</sup>]で表す が,数値実験では季節性インフルエンザを想 定して、基本再生産数 $R_0 = \beta / \gamma = 2.5$ 、 $\gamma =$ 1/3に固定した(例えば, [4]).時間離散化し た MAS に実装する SIR プロセスに関しては, サイズNおよびその時点の感受性エージェン ト数 S (S+I+R=N で正規化), 感染エージェン ト数 Iにより1 感染イベントの生起時間が確 率的に異なる動特性を評価するため、Gillespie 法[5]を適用した.その際、感染率は上記の $\beta$ で はなく、1人の感染者が有する1本のリンク の反対側ノードにいる1人の隣人エージェン トを感染させる有効感染率 $\beta_{eff}$  [person<sup>-1</sup> day<sup>-1</sup> link<sup>1</sup>]を与える必要がある.本論ではFuらの 方法[6]を踏襲した.すなわち、 $N = 10^4$ 、 $\langle k \rangle =$ 8の BA-SF の最終感染者サイズ(以下、FES = R/N (Final Epidemic Size)(但し、Rは均衡時 回復者数))が、平均場近似 SIR モデル解析解 にRo = 2.5を代入して得られる FES(0.8962) と一致する有効感染率 $\beta_{eff} = 0.196$ を用いた [7].

1 エピソードは,時刻 t=0 で初期感染者Io  $(I_0 = 5 に固定) をネットワーク上にランダム$ に配置することから始まる. 次いで感染者の 第1近傍隣人にワクチンを接種する. ワクチ ンの確率性に関しては、文献[8]に倣って effectiveness (e) と efficiency ( $\eta$ ) の 2 つを検 討する. 前者では, ワクチン接種者は確率 e (0≤e≤1;e=1 は全員が免疫獲得)で完 全免疫を獲得し、1 - eで状態Sのままとして 扱う.後者では、ワクチン接種者は感染した 隣人からの感染リスクを常に割り引く,すな わち,  $\beta_{\text{eff}}(1-\eta)$ で感染する  $(0 \leq \eta \leq 1; \eta =$ 1 では接種者は感染しない). このワクチンの 確率性により、たとえ、後述する情報ノイズ がなくても, t=0 での封じ込めは失敗し, DV を掻い潜って2次感染者が発生する(Fig.1(b)). その場合、次の時間ステップでは、同様に感 染者の第1近傍隣人にワクチン接種を施す. その際, すでにワクチン接種を受けたエージ ェントは、接種対象とはしない.この一連の プロセスを感染者が系内にいなくなるまで繰 り返す.

我々のモデルでは、以下の情報ノイズを考える.(i)確率 $Er_{l}$ ( $0 \le Er_{l} \le 1$ )で感染者を検知できない、(ii)確率 $Er_{N}$ ( $0 \le Er_{N} \le 1$ )で感染者の隣人を検知できない、(iii)確率 $Er_{I&N}$ ( $0 \le Er_{I&N} \le 1$ )で感染者を検知できず、かつ検知できた感染者の隣人を確率 $Er_{I&N}$ で検知できない.

MAS による数値実験では, ワクチンの efficacy (eもしくは $\eta$ ) と上記3 設定における 情報ノイズのエラー率を変えながら, 各エピ ソードにおける均衡 (I = 0; 感染収束に至っ た状態) を 100 エピソードで平均をとり解析 対象とする. 評価パラメータは, (a)DV に要し たワクチンの総量を意味するワクチン接種率 (以下, vaccination coverage;  $VC \equiv V/N$ , 但し, Vはワクチン接種者数累計), (b)最終感染者サイズFES, (c)疾病コストに対しする相対ワク $チンコスト<math>C_r$ を 0.5 に固定し,  $-C_r * VC - FES$ により計量される社会平均コスト(以下, social average payoff; SAP), (d)シーズン終了ま での時間 *Time* (Fig2,3), ワクチン接種のない 自然状況下での最終感染者サイズ $FES_{V=0}$ が DV によりどれだけ改善されたかを単位ワク チン当たりの効率で評価する D[*FES*]/ D[*VC*] = (*FES*<sub>V=0</sub> - *FES*)/*VC* (Fig4).

### 3. 結果と考察

まず,ワクチンの確率性を effectiveness (e) とするか efficiency  $(\eta)$  とするかによる特性差 を Fig.2, Fig.3 で比較する. 両図最下段(d-\*)の パネルは均衡に達するまでの時間ステップを 表す. efficiency ケース (Fig.2) ではηがほぼ 1 となる場合にだけ, DV が有効に機能する(VC が低く, FES が小さい;これは DV による初 期封じ込めが行われたことを意味する).これ は、 $\beta_{eff}(1-\eta)$ が0でないため、感染が拡が り,エピソードが長期間にわたると,感染隣 人があればいずれは感染することになるから である.対して, effectiveness ケース (Fig.3) ではeが 0.7 程度まで低下しても, DV は有効 に機能している. 情報ノイズについては、い ずれの efficacy モデルでも,極端に大きくなら ない限り, DV が機能する領域での感度は小さ い. また、ワクチンの確率性についても、 efficacy が低下して, VC が高く, FES が大き くなる領域は,DV による封じ込めが成功せず に,時間発展に従って,いわば「無駄な」ワク チン接種がいたずらに繰り返され、結句、大 感染に至っていることを意味する. これにも エラー率の影響よりもワクチン efficacy が大 きく利いている.

Fig.3(d-3)を見ると, effectiveness が高く, Er<sub>I&N</sub>が極端に大きな領域で,均衡に至る時間 ステップが非常に大きくなっている.これは, 感染者とその濃厚接触者の特定に多大のノイ ズが混入すると,DVによるワクチン接種を逐 次投入せざるを得なくなって,結果的には FES をそれなりに小さくできたとしても,多 大の資源投入と時間を要することになること を意味している(これよりエラー率が多くな ると直ぐに感染蔓延になるので均衡に至るの に時間を要しない).

以下では efficiency ( $\eta$ ) は DV の枠組みに有 効でないことが判明したため, efficacy として は, effectiveness (e) を前提とする. Fig.3 で観 察された DV が有効に機能する領域をより低 い e へ拡大させる方策として,予防原則に基 づいて第 2 近傍隣人までワクチン接種範囲を 拡げるモデルを考える.



**Fig.2** Efficiency を適応した $E_r - \eta$ 相図を示す. ワクチン 接種率 VC (最上列),最終感染者サイズ FES (第2列), 社会平均利得 SAP (第3列),シーズン終了までの時間 Time (最下列). 左,中央,右のパネルは各々 $Er_I$ ,  $Er_N$ ,  $Er_{INN}$ の場合を示す. 図中で,青色は社会にとって望まし い状況を,赤色は望ましくない状況を示す.



Fig.3 Effectiveness を適応したE<sub>r</sub> - e相図. 図の構成は,



**Fig. 4** *E<sub>r</sub>* - *e*相図. ワクチン接種率 *VC* (最上列),最終 感染者サイズ *FES*(第2列),社会平均利得 *SAP*(第3列), *D*[*FES*]/*D*[*VC*] (最下列) について第2 近傍拡張モデル (50%) から第1 近傍モデルの結果を差し引いた差画像. *D*[*FES*]/*D*[*VC*]中の線は夫々第2 近傍モデル(緑線),第 1 近傍モデル(黒線)の*D*[*FES*]/*D*[*VC*] = 1を示す.

但し, SF グラフ上での第2近傍の数はNに対 して無視し得ないほど大きくなる場合がある. そこで第2近傍のワクチン接種者はランダム に選んだ 50%の隣人に限定する. Fig.4 は Fig.3 の第1近傍ケースとの差を示す. DV が有効 に機能した領域で,第2近傍ケースでは VC が高く, FES に大きな差異はなし(封じ込め に成功したので)が, SAP は悪化する. パネ ル中の緑点線と黒実線は、それぞれ、第2近 傍, 第1近傍ケースにおけるD[FES]/D[VC] = 1, すなわちそれ以上の effectiveness ではじめ てワクチン接種が合理化される「1 回のワク チン接種が1エージェントの感染回避を保証 する」臨界線を意味する.パネル(d)から明ら かなように, 図中では緑線が黒線よりも上部 に位置しており、第2近傍に接種者を拡大す るとD[FES]/D[VC]が大きく悪化することに よる. ワクチンの無駄打ちが生じているので ある.パネル(c-3)のエラー率が極端に大きい 領域で第2近傍ケースの SAP が優越するが、 パラメータ範囲はごく狭小である(黒破線 box). つまり, 情報ノイズが極めて大きい限 定的な状況であり, effectiveness (e) の場合,

DV において第 2 近傍に拡大することは、この例外を除けば益なしといえる.

### 4. 結言

感染症の初期封じ込め策としての Dynamic vaccination の成否は,感染者本人やその接触 者を特定する精度からくる影響は相対的に小 さく,接種するワクチンの信頼性によるとこ ろが大きいことが明らかになった.また,ワ クチン接種対象の範囲を拡大する方策は,感 染者や接触者の特定が極めて困難な状況を除 き,無駄打ちの影響(単位ワクチン当たりの 最終感染者サイズ圧縮効果が減少)により, 社会総コストが増加することが示された.

#### 謝辞

本研究の一部は科研費 国際共同研究(B) (19KK0262) 基盤研究(B) (20H02314),挑戦的研 究(萌芽) (20H02314A) による. 記して謝意を表す る.

\*1 本稿では,最初の感染者発生をt = 0とし,その 時点から発生した感染者に対して DV を適用す ることで,その後の数ステップで大感染に至る ことなく感染者を根絶できた場合を「初期」封 じ込めと表記している.

#### 参考文献

- Alvarez-Zuzek, L. G., Di, Muro, M. A., Havlin, S., Braunstein L. A.; Dynamic vaccination in partially overlapped multiplex network, *Phys. Rev. E*, **99**, 1, 012302, 2019
- [2] K. W. O., McKendrick, A. G., A contribution to the mathematical theory of epidemics, *Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character*, 115, 772, 700–721, 1927
- [3] Barabási, A.-L., Albert, R.; Emergence of scaling in random networks, *Science (80-.).*, 286, 5439, 509– 512, 1999
- [4] Kabir, K. M. A., Tanimoto, J.; Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach, *Chaos, Solitons & Fractals*, **123**, 229–239, 2019
- [5] Gillespie, D. T.; Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 25, 2340–2361, 1977
- [6] Fu F., Rosenbloom, D. I., Wang, L., Nowak, M. A., Imitation dynamics of vaccination behaviour on social networks, *Proc. R. Soc. B Biol. Sci.*, 278, 1702, 42–49, 2011
- [7] Fukuda, E., Kokubo, S., Tanimoto, J., Wang, Z., Hagishima, A., Ikegaya, N., Risk assessment for infectious disease and its impact on voluntary vaccination behavior in social networks, *Chaos, Solitons & Fractals*, 68, 1–9, 2014
- [8] Kuga, K., Tanimoto, J.; Which is more effective for suppressing an infectious disease: imperfect vaccination or defense against contagion?, J. Stat. Mech. Theory Exp., 2018, 2, 023407, 2018

## SIR ダイナミクスにおける感染率の定義の違いが 最終感染者サイズに及ぼす影響

## 内海 忍,谷本 潤

## 九州大学 工学部 エネルギー科学科 九州大学院 総合理工学研究院 環境理工学部門

#### 概要

Small-world 上を SIR プロセスに従い伝搬する感染症ダイナミクスを Multi Agent Simulation によ り解析した. MAS 上で付与する感染率を,既往の vaccination game の MAS 解析で用いられてき た定義に依る場合と,一人の infectious エージェントがリンク1本先の隣人を単位時間に感染さ せる確率で定義する場合とで比較した. short-cut 確率,平均次数を変えながら比較計量したと ころ,前者定義では,最終感染者サイズ,ピーク感染者サイズともに後者定義による結果より過 大評価される.後者の定義による結果では,short-cut 確率が大きくなるほど,平均次数が大き くなるほど,ピーク感染者サイズが大きくなるとの妥当な感度が再現された.この結果は,感染 率の定義を従来の MAS による vaccination game で頻用されてきた Fu の定義に依るか,リンク1 本あたりの感染率に依るかにより大きく異なることが明らかとなった.

## Influence from different definition of 'transmission rate' for SIR process on final epidemic size

Shinobu Utsumi<sup>\*1</sup>, Jun Tanimoto<sup>\*2</sup>

\*1 Undergraduate School of Engineering, Kyushu University \*2 Faculty of Engineering Sciences, Kyushu University

#### Abstract

By means of multi agent simulation; MAS, approach, presuming Small world (SW) networks, the sensitivity resulting from average degree, i.e., density of links in other words, and short-cut probability affecting on final epidemic size (FES) as well as peak infection size was explored. Besides the effective transmission rate by Fu's concept in his vaccination game model, we newly introduced the equivalent transmission rate that literally indicates how a single infectious person communicating his disease to a neighboring agent on one of the links during an unit time (day). Our result reveals that the effective transmission rate by Fu's concept overestimates both FES and peak infection size. In contrast, the equivalent transmission rate well-reproduces that the increase of average degree or/ and the increase of short-cut probability pushes up the peak infection size.

## 1.緒言

日本における COVID-19 の初期伝搬過程に は、感染能力を有するが自覚症状を持たない 中国からの旅行者がトリガーになった可能性 が高い.ワクチンや抗ウイルス剤等の医療対 処策が十全でない未知の感染症に対しては, 伝搬初期段階で感染者を検知すること(そし て適切に隔離すること)が,封じ込めの可否 に大きく影響する.ところで,人間の複雑社 会ネットワークの基本的特徴として Smallworld 性と次数分布の scale-free 性が知られて いるが,有限ノードで構成されるこれらのト ポロジー上での SIR や SEIR プロセスには解析 解がないので, Multi-agent simulation (以下,

MAS)を適用して統計的に評価する必要があ る. MASにより感染ダイナミクスを解析する に際しては,基本再生産数の定義との整合性 から感染率をどう付与するかは,大きな問題 である.既往では,Fu[1]の vaccination game の定義による方法が多く踏襲されているが, これはリンク1本当たりの隣人を感染させる 効率との概念が反映されておらず,物理的に は疑問が残る.本論では,これとは異なる定 義を示し,基盤グラフを Small-world にとっ て,最終感染者サイズを計量する事で,上記 の定義の違いを検討した.なお,Small-world を仮定するのは,short-cut が前記の旅行者の 持ち込むウィルスの影響を模擬しているとの 認識による.

### 2.モデル

<u>2.1 Small-World (SW) ネットワーク</u>

Watts と Strogatz[2]による WS—SW モデル に依った. 但し, short-cut 確率; *p*=0 では 2 次元格子グラフ (次数 *k*=8 ならば Moore 近傍 を有する 2 次元ラチス)を, *p*=1 では次数分 布がポアソン分布となる Erdős-Rényi グラフ [3] を再現する.

### 2.2 感染症伝搬ダイナミクスのモデル

感染症伝搬は Kermack & McKendrick[4]によ る SIR (Susceptible-Infectious-Recovered) ダイ ナミクスに従うとした. すなわちグラフ上の ノードであるエージェントは,初期感染エー ジェントを除き,感染可能性に応じて,感受 性エージェント S,感染エージェント I,回復 エージェント (免疫獲得エージェント) Rの3 クラスの順に確率的に推移する. R は完全免 疫を仮定し,2度目の感染は起きないとした. 従って,譬えグラフサイズ全域に及ぶ感染症 大流行が起きたとしても,十分な時間経過の のちには,系内には I エージェントは存在し なくなる. この時点をもって,均衡と定義す

る. MAS 上で空間構造のある SIR ダイナミク スを模擬するにあたっては、その確率過程を 精度良く再現するために Gillespie 法[5] を用 いた.空間上にランダムに配置する初期感染 者 (その数; $I_0$ )の影響と伝搬過程の確率性と に対してロバストな結果を担保するため、あ る条件設定に対して 100 試行のアンサンブル 平均をもって評価を行う.

著者らの一連の vaccination game に関する 研究(例えば, [6][7]) に倣って,基本再生産 数 $R_0 = 2.5$ ,平均回復日数の逆数を意味する 回復率を $\gamma = 1/3$ [day<sup>-1</sup>]と仮定した.この値 は季節性インフルエンザに特徴的な仮定値と されおり,COVID-19を必ずしも模擬した設定 とはなっていない.

 $R_0$ と $\gamma$ を決めることで自動的に定まる感染 率は,  $\beta = R_0 \cdot \gamma = 0.833$ となる. 但し, この $\beta$ は, SIR 過程を well-mixed かつ無限集団を仮 定した平均場近似を適用した場合の ODE(常 微分方程式)モデル(例えば、[8])に対応し た定義である.空間構造すなわち有限サイズ の基盤グラフ上を想定した MAS では、このβ とは異なる, Gillespie 法に対応した, いわば リンク1本あたりの感染率を定義する必要が ある. この点に関しては、エージェントのワ クチン接種にまつわる意思決定を取り込んだ vaccination game において, Fu[1]らによる有 効感染率(以下, $\beta_{eff}$ とする)の考え方が広く 受け入れられている. βeffは以下のように同定 する. SIR プロセスの ODE モデルでは,解析 解が得られており、R<sub>0</sub>を所与とすれば、R<sub>0</sub>に 関する超越方程式を求解することで FES が定 まる. R<sub>0</sub> = 2.5に対するそれは 0.8962 である. MAS で解析する空間構造がある系に対して,  $\beta_{\text{eff}} \ge 0$ から徐々に上げていくと、アンサンブ ル平均を採った FES がこの 0.8962 にクロス (-致) する $\beta_{eff}$ を数値的に決めることができ る、これが、Fuらが提案した $\beta_{eff}$ (以下、有効 感染率)の定義である.従って、この $\beta_{eff}$ は概 念的にはリンク当たりの感染率であるにも関 わらず、トポロジーにより異なる値をとなる. のみならず,同じトポロジーでもドメインサ イズが異なれば,また特に SW では short-cut 確率が異なれば,異なる $\beta_{eff}$ となる.これは, 物理的にはやや解釈に窮するが、ワクチン接 種などの処置を採らない、自然下の感染に任

せていれば、譬えトポロジーが異なろうと、 その FES は ODE モデルが規定する解析解に 常に一致するとの仮定から来ている.本論で は、この Fu のコンセプトに依拠する有効感染 率と並んで別定義のリンク当たり感染率とし て相当感染率(以下、 $\beta_{eq}$ とする)を次式で定 義する

$$\beta_{\rm eq} = \frac{R_0 \cdot \gamma}{\langle k \rangle}$$

ODE モデルでは系内人口が 1 に基準化されて いる点を踏むならば、この定義は $\beta = R_0 \cdot \gamma \epsilon$ リンク数当たり換算しているものである.  $\beta_{eff}$ がリンク当たりの概念が曖昧なのに対して、  $\beta_{eq}$ は[day<sup>-1</sup>person<sup>-1</sup>link<sup>-1</sup>]を物理単位とす る定義になっている.

### 3. 結果及び考察

MAS による数値実験では、 $\beta_{eff} \ge \beta_{eq}$ の異なる 感染率定義に対して、SW の short-cut 確率を 変えながら、また平均次数を変えながら、試 行 100 回のアンサンブルと採って、FES とピ ーク感染者サイズを計量した.結果を Fig.1 に 示す.なお、サイズ N は 104 粒子、初期感染 者数; $I_0$  は 5 とした.左カラムが Fu らによる 有効感染率による結果、右カラムがここで提 示した相当感染率による結果である.上段は 夫々 $\beta_{eff} \ge \beta_{eq}$ を示す.右カラム上段の $\beta_{eq}$ のヒ ートマップは、上記の定義からして short-cut 確率に依らない.中段は FES、下段はピーク感 染者サイズ (各エピソード時間発展中のピー ク感染者サイズを 100 アンサンブル平均採っ た値)である.

Fig.2 は  $N=9 \times 10^4$  粒子,  $I_0=45$  の結果であ る.初期感染率密度を Fig.1 と同様として,純 粋にドメインサイズの影響を比較するために 描いた.まず,この点を考察する.Fig.1 と Fig.2 の各パネルを比較すると,Fig.2 の方が shortcut 確率に対する感度,平均次数に対する感度 どもに Fig.1 より滑らかに見えるけれど,大略, 大きな特性差は観察されない.つまり,粒子 数 1 万程度の MAS で,系の有限性の影響は有



**Fig. 1** MAS による結果. 左カラムは有効感染 率 $\beta_{eff}$ ,右カラムは相当感染率 $\beta_{eq}$ による. 上段は  $\beta_{eff}$ (左) および $\beta_{eq}$ (右),中段は最終感染者サ イズ.下段はピーク感染者サイズ.  $N = 1 \times 10^4$ .



**Fig. 2** MAS による結果. 左カラムは有効感染 率 $\beta_{eff}$ , 右カラムは相当感染率 $\beta_{eq}$ による. 上段は  $\beta_{eff}$  (左) および $\beta_{eq}$  (右), 中段は最終感染者サ イズ. 下段はピーク感染者サイズ.  $N = 9 \times 10^4$ .

意でなくなると云える.

Fig.1, Fig.2 共通で各パネルの特性を見てい こう.まず、 $\beta_{eff} \geq \beta_{eq}$ の差異は、空間型囚人の ジレンマゲームなどで仮定される平均次数 10前後のレベルでは、大きく異なる.現実の 感染症伝搬で想起される平均次数はそれより は大きいと思われるが、平均次数増大ともに  $\beta_{eff} \geq \beta_{eq}$ には顕著な差異はなくなる.これに よりパネル上方領域での FES やピーク感染者 サイズもどちらの感染率の定義によっても大 差はなくなる.

FES, ピーク感染者サイズともに $\beta_{eff}$ では $\beta_{eq}$ より大きな値を示す. 仮に $\beta_{eq}$ による結果がリ ンク当たり感染率をより忠実に模擬している のだとすると, Fu のコンセプトによる $\beta_{eff}$ で は過大予測をもたらすことになる. また,  $\beta_{eff}$ の FES が short-cut 確率と平均次数に感度を 持たなくなるのは,  $\beta_{eff}$ の定義からして当然の 帰結である.  $\beta_{eq}$ では次数 8 で short-cut 確率 に感度を持つが, 大きな次数では $\beta_{eff}$ 同様ほぼ 無感度である.

大きな特性差が露わとなるのは、ピーク感 染者サイズである.  $\beta_{eq}$ では short-cut 確率が 大きくなるほどに、また平均次数が大きくな るほどに大きなピーク感染者サイズとなるが、  $\beta_{eff}$ では次数に対する感度は大きく出ない. 感 染症伝搬プロセスを考えると、平均次数が大 きくなれば、爆発的感染が起きる可能性が高 くなるから、ピーク感染者サイズが高くなる  $\beta_{eq}$ による結果の方がより適切に現実を模擬 していると云えよう.

### 4.結言

Small-world 上を SIR プロセスに従い伝搬す る 感 染 症 ダイナミクスを Multi Agent Simulation により解析した. MAS 上で付与す る感染率を,既往の vaccination game の MAS 解析で用いられてきた Fu の定義に依る場合, 一人の infectious エージェントがリンク1本 先の隣人を単位時間に感染させる確率で定義 する場合とで比較した. short-cut 確率,平均 次数を変えながら比較計量したところ,Fu の 定義では、最終感染者サイズ、ピーク感染者 サイズともに後者の定義による結果より過大 評価することが示唆された.対して、後者の 定義による結果では、short-cut 確率が大きく なるほど、また平均次数が大きくなるほど、 ピーク感染者サイズが大きくなるとの妥当な 感度が再現された.以上より、Fuによる有効 感染率よりも、本稿で示した相当感染率の方 がより適切であることが示唆された.

#### 謝辞

本研究の一部は科研費 国際共同研究(B) (19KK0262) 基盤研究(B) (20H02314),挑戦 的研究(萌芽) (20H02314A) による記して謝意 を表する.

## 参考文献

- [1] Fu, F., Rosenbloom, D. I., Wang, L., Nowak, M. A.; Imitation dynamics of vaccination behaviour on social networks, *Proceedings of the Royal Society B*, 278, 42–49, 2011.
- [2] D. J. Watts, S. H. Strogatz,; Collective dynamics of 'Small-World' networks, *Nature*, **393(6684)**, 440–442, 1998.
- [3] Erdős P, Rényi A.; On random graphs. I., Publicationes Mathematicae, 6, 290–297, 1959.
- [4] Kermack, W. O., McKendrick, A. G.; A contribution to the mathematical theory of epidemics, *Proceedings of the Royal Society of London* A **115(772)**, 700–721, 1927.
- [5] Gillespie, D. T. J.; Exact stochastic simulation of coupled chemical reactions, *Journal of physical chemistry*, **81(25)**, 2340–2361, 1977.
- [6] Fukuda, E., Tanimoto, J.; Effects of stubborn decision-makers on vaccination and disease propagation in social networks, *International Journal of Automation and Logistics*, 2, 78-92, 2016,
- [7] Fukuda, E., Kokubo, S., Tanimoto, J. Wang, Z., Hagishima, A., Ikegaya, N.,; Risk assessment for infectious disease and its impact on voluntary vaccination behavior in social networks, *Chaos*, *Solitons & Fractals*, **68**, 1–9, 2014.
- [8] Arefin, M. R., Tanaka, M., Kabir, K. M. A., Tanimoto, J.; Interplay between cost and effectiveness in influenza vaccine uptake: a vaccination game approach, *Proceedings of the Royal Society A*, **475**, 20190608, 2019.

## 外出人数と COVID-19 実効再生産数の Scaling 関係による 人-人接触項の検証

島田 尚

<sup>1</sup>東京大学 大学院工学系研究科 システム創成学専攻 <sup>2</sup>東京大学 数理・情報教育研究センター

#### 概要

携帯電話の位置情報から得られた東京主要駅の乗降客数の変化と、東京都における実効再生産数 との関係を解析した。まず、「接触機会が外出人数の増加関数である」という自然で簡単な仮定 から、感染から感染報告までの平均遅れ時間について約15日という現実的な推定値を得た。ま た、この報告遅れ時間に基づいた接触機会と外出人数の関係性のフィッティングから、接触機会 の密度依存性がロトカボルテラ型より緩やかであることが見出された。さらに、この全体的傾向 からのずれとして行動変容などの効果を伺うことができること、また、特に目立つ急峻な変化が 各種要請の発出や解除のタイミングと一致していることなども見出された。

## Estimation of human contact rate from the scaling relation between the effective reproduction number of COVID-19 and the size of active crowd in Tokyo area

Takashi Shimada $^{1,2}$ 

 $^1$  Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo $^2$  Mathematics and Informatics Center, The University of Tokyo

#### Abstract

The relation between the number of passengers in the main stations and the infection rate of COVID19 in Tokyo area is studied. Based on a natural assumption that the human contact rate is an increasing function of active population density, we first determine average time from the day of infection to the report day as 15 days. Furthermore, from the scaling relation between the density of active population and the infection rate, we find the dependency of the human contact rate on the population density is slower than that of Lotka-Volterra type model.

## 1 はじめに

COVID-19 などの感染症の拡大防止の一般的対策 として行われる外出の制限(要請)は、これによる 人-人接触機会の低減を目的としている。このような 制限はその有効性は疑いようが無い一方で文化・社 会・経済などへの負の影響も大きいため、外出人数 のような把握が容易なマクロな量と接触機会との関 係の検証が重要である。生態・社会学の理論の側か らも、ロトカボルテラ方程式や SIR モデルなど、ポ ピュレーションの積で単純にモデル化された接触機 会の項が人の行動のモデルとしてどれだけ当てはま るかを理解・検証することは意義深い。

主要駅の乗降客数の変化と同じく東京都における COVID-19の実効再生産数(感染者の相対人数が非 常に少ないことに基づけば、接触機会と比例する) との関係から人-人接触機会の密度依存性を調べた 我々の研究[1]を紹介し、さらにこの解析結果につ いて議論する。

#### 解析方法とデータ 2

#### 解析の方針 2.1

本研究では未感染状態、感染状態、免疫獲得状態 の3状態による簡単なコンパートメントモデル:

$$\Delta S_t = S_{t+1} - S_t = -\beta C(S_t, I_t),$$
  

$$\Delta I_t = I_{t+1} - I_t = \beta C(S_t, I_t) - \gamma I_t,$$
  

$$\Delta R_t = R_{t+1} - R_t = \gamma I_t,$$
(1)

に基づいて解析を行う。ここで  $S_t, I_t, R_t$  はそれぞ れ考えている地域における未感染状態、感染状態、 免疫獲得状態の人数の比(もしくは人口密度)であ る。βは未感染者と感染者の接触機会当たりの感染 率を表す定数であり、一般に病原体や人々の生活様 式によって決まる量である。γは単位時間当たりの 治癒率で、ここでは疫学研究の報告から  $\gamma = 14^{-1}$ [day-1] 程度にとる。後の解析のため、もっとも一般 的な SIR モデルで  $\beta S_t I_t$  と書かれる感染プロセスの 項の接触機会頻度を表す S+I+ の部分を

$$C(S_t, I_t) = S_t I_t \cdot A(S_t, I_t, R_t).$$
(2)

と一般化して書いてあることに留意いただきたい。 ここに  $A(S_t, I_t, R_t)$  は接触機会頻度の関数形の  $S_t I_t$ からのずれを表す修正項である。

感染拡大の趨勢の評価に最も大事な量である実効 再生産数(その時点における、感染者1人が治癒も しくは死亡までに感染させる人数の平均)が各日に おけるこの地域での新規感染報告数の時系列 O<sub>t</sub> か ら次のように求められる:

$$\mathcal{R}_t \equiv \frac{-\Delta S_t}{\Delta R_t} = \frac{O_{t+t_d}}{\gamma \left(\sum_{\tau=\tau_0}^t O_{\tau+t_d} e^{-\gamma(t-\tau)}\right)} \quad (3)$$

ただしここで、t<sub>d</sub>は真の感染日から感染報告日まで の時間遅れの平均であり、一般には疫学的な知見な は人と人との接触機会について SIR モデルなどと どから決定する必要がある。

さて今、この地域が(我々が経験したように)外出 本稿では、携帯電話の位置情報から推定した東京 制限などの結果として「感染機会となり得る、住居外 での活動をした人数」が大きく変化した場合を考え る。この場合、各時点での外出人数の通常時 N との 比を $n_t = N_t / \bar{N}$ と書けば、感染プロセス $\beta C(S_t, I_t)$ の中の  $S_t, I_t$  はそれぞれ  $\tilde{S}_t = n_t S_t, \tilde{I}_t = n_t I_t, \tilde{C}_t$ 置き換えられなければならない。一方で治癒率の項  $\gamma I_t$  はそのままであるので、ここから新規感染報告 数と実効再生産数が

$$O_{t+t_d} = -\Delta S_t = \left(\beta S_t I_t\right) n_t^2 A(S_t, I_t, R_t) \qquad (4)$$

$$\mathcal{R}_t = \frac{O_{t+t_d}}{\gamma I_t} \approx \left(\frac{\beta}{\gamma}\right) n_t^2 A(S_t, I_t, R_t) \qquad (5)$$

とn<sub>t</sub>に依存することになる。言い換えれば、外出制 限などで外出人数 (実効的な活動を行なった人数) が大きく変動した期間の実効再生産数 Rt の変化の 振る舞いが nt の2 乗からずれていれば、それは人-人接触項の SIR モデル型(もしくはロトカ-ボルテ ラや化学反応型)からの修正を示唆するということ になる。

## 2.2 データ

本研究では、匿名化された携帯電話の位置情報か ら得られた東京主要駅(東京、新宿、池袋、渋谷)に おける乗降人数の各日推移のデータを用いる [2]。具 体的には、上述の「通常時に対する外出人数の比」n<sub>t</sub> をこれら主要駅の乗降人数の合計の比で置き換える。 外出人数に直接に比例すると考えられるこのデータ の存在は我々の上述の解析にとって決定的に重要で ある。また、新規感染者報告数については東京都よ り公表されているデータを用いた。なお、よく知ら れているように新規感染者報告数は感染実態とは関 連が薄いと思われる曜日依存性が大きいため、前後 各1週間の2週間移動平均をとったものを Ot とし て扱った。また、これに対応させて乗降人数の時系 列についても2週間の移動平均をとった。

#### 結果 3

#### 報告遅れ時間 t<sub>d</sub>の推定 3.1

コンパートメントモデルを基盤とした解析の利点 として、通常は疫学的な調査から別途定める必要の ある「感染日から報告日までのずれ」 t<sub>d</sub>を推定する ことができる点も重要である。上述したように我々 はずれた関数形も視野に入れて解析するわけである

が、その上で「接触機会が外出人数の増加関数であ る」という仮定をおく。この仮定に基づくと、適当 に選んだ $t_d$ について計算した $n_t \ge R_t$ の二次元プ ロットが最も良く一価の関数で表されるような $t_d$ を 選べば良いことになる。実際、図1に示すように、  $n_t - R_t$ プロットは遅れ時間 $t_d$ を(非現実的な)0日 とした場合には大きくループを描いて一価の関係に ならない一方で他の研究報告の値に近い2週間程度 としした場合はほぼ一価の関数関係にあることが分 かる。「一価の関数関係の良さ」に基づく最適な $t_d$ は(もちろん目視によってでなく) $n_t \ge R_t$ の順位 相関を取ることによって求められ、その値は $t_d = 15$ 日である。こうして決める最適値が、他の知見から 天下り的に与えたパラメターである $\gamma$ の値にあまり 依存性しないことも確かめられている。

この解析に用いた仮定は、観測期間においてある 一定の数理モデルが適用可能であるとすれば非常に 自然でロバストな仮定と言える。一方で、観測期間 内の人々の行動変容やウイルスの strain の変化の効 果、またさらにはそもそもこのような巨視的量に基 づいたモデリングへの疑義まで含めれば、特に一価 の関数関係が成り立つことは全く自明では無い。こ の点からは、今回解析対象とした 2020 年の 2 月か ら9月という緊急事態宣言や就労・通学の様式の激 変があった長い期間に渡り $n_t$ と $R_t$ の関係性が関数 関係でほぼ一定に保たれていたという結果はむしろ 驚きに値すると言える。また、緊急事態宣言による 外出の最大限の抑制期間の前後で R<sub>t</sub> が同じ曲線に 乗って上昇したことは行動変容の効果が小さかった こと(もしくはこの期間の前から人々の感染防止行 動がかなり最適に近かったこと)をも示している。

## 3.2 **人-人接触項の評価**

報告遅れ時間  $t_d$  と、実効的な人口密度  $n_t$  と  $R_t$ (人-人接触項 C に比例) との関数関係の良さとが見 出されたので、次にこの関数関係についてフィッティ ングを行う。フィッティングには、SIR モデルが良 く成り立つ場合に対応する

$$R_t = \mathcal{R}_0 n_t^2 \tag{6}$$

と、同じく SIR モデルの接触項の仮定を保持しつ つ、感染プロセスに関わるポピュレーションには主 要駅での乗降客数からは捕捉されない定数項 n<sub>0</sub> が



図 1: 感染日から感染報告日までの平均遅れ時間  $t_d \ge 0$ 日、一週間、二週間とそれぞれとった場合 の  $n_t \ge R_t$ の関係。順位相関から求まる最適点に 近い  $t_d = 2$  週間の場合には  $n_t \ge R_t$  はほぼ一価の 関係となる。

あるとした関数

$$R'_t = \mathcal{R}_0 \left(\frac{n_0 + n_t}{n_0 + 1}\right)^2 \tag{7}$$

また最後に人と人との接触項の密度依存性が SIR モ デルと異なるとした関数を用いた:

$$R_t^{pow} = \mathcal{R}_0 n_t^{2-\alpha}.$$
(8)

この結果、最後の関数  $R_t^{pow}$  が最も良いフィット を与えることが分かった。ここで  $R_t^{pow}$  の形状は人 の接触項について SIR モデルから以下のような修 正がされたことに対応する:

$$C(S_t, I_t) = S_t I_t A(S_t, I_t, R_t) = \frac{C_0 S_t I_t}{n_t^{\alpha}}$$
(9)

ので、 $\alpha$ はいわば「人の活動の主体性を示すパラメ ター」と言えることに注意したい。すなわち、 $\alpha = 0$ は例えば街行く人々同士が近接する確率がその濃度 の二乗に比例するのであるからあたかも原子分子の ように「意志無く」振る舞う場合に相当する。一方  $\alpha > 0$ は分子運動に比べて低密度では衝突頻度が下 がらず、また高密度では衝突頻度の上がりが緩やか な場合に対応し、これは人々は外出するそもそもの 目的が人との接触機会(仕事、買い物、面会)と関 連しており、また移動経路上など可能な場面では人 と距離を取ろうとするものと考えると自然な補正方 向である。反対に $\alpha < 0$ は衝突項のより急峻な密度 依存性に対応するが、これは例えばいつもは距離を 保とうとするものの、駅や店内、電車内などで高密 度の場所が発生した場合に受動的に近接してしまう という状況に対応する。接触頻度が密度の増加関数 でなくなってしまうというのは非現実的であると考 えると、この「人の行動の主体性」パラメターの自 然な領域は $\alpha < 2$ であると言える。

実データのベストフィッティングから得られる指数は $\alpha \sim 1$ であり、これは人々の行動の主体的な面がとらえられたと考えることができる。また、 $\alpha \sim 1$ すなわち接触項が密度の1乗に近いという結果は式(1)のコンパートメントモデルに戻って考えると別の意味で示唆深い。今回の解析ではある地域における感染プロセスに関わる $n_t$ が時間的に大きく変化する場合を扱ったが、今度は異なる色々の地域の平均の人口密度比を $n_t$ によりモデリングしていると考えてみる。この場合接触(感染)項に加えて治癒項 $\gamma I_t$ も $n_t$ 倍に修正されるので、コンパートメント モデルの差分を表す各項が $n_t$ 倍されるだけ:

$$\Delta S_t = -n_t \cdot \beta S_t, I_t,$$
  

$$\Delta I_t = n_t \cdot (\beta S_t, I_t - \gamma I_t),$$
  

$$\Delta R_t = n_t \cdot \gamma I_t,$$
(10)

となり、ここから計算される実効再生産数 *R<sub>t</sub>* が人 口密度に依らないということになる。この面からは、 今回のフィッティングで得られた修正接触項は、平均 の人口密度の大きく異なる世界の各地域で一様に感 染拡大が起こっている現象の良い巨視モデルとなっ ていると言うことができる。

## 4 まとめと展望:Scaling 関係を 超えて

以上、東京主要駅の乗降客数の変化と、東京都に おける実効再生産数との関係についてのマクロモデ ルを基盤とした解析から、真の感染から感染報告ま での平均遅れ時間という調査の難しい量についての 良い推定を得たほか、人と人との接触機会の密度依 存性を評価することができた。

また最後に、これらの期間全体についての解析を 基にしつつ、全体の傾向からのずれから窺えること についても定性的に議論したい。図2に示す通り、 期間全体に渡り良い相関を示す n<sub>t</sub> と R<sub>t</sub> の時系列 をより細かくみると、 $n_t$ がさほど変化していないが  $R_t$ が大きく変化している時点があることが分かる。 興味深いことにこれらの変化は、緊急事態宣言の全 国への適用時 ( $R_t$ 減少)、緊急事態宣言の一部解除 ( $R_t$ 上昇)、東京アラートの宣言 ( $R_t$ 減少)など今 回対象の東京圏には直接の制限などが及ばない自粛 要請や解除のタイミングと良く一致している。これ らの、今回のモデルに沿えば $\beta$ の変化に対応すると 思われるイベントについての解析には他のデータと の照合が必要に思われる。

さらに、今回得られた接触機会の人密度依存性が地 域や社会をまたいでどれほど普遍的であるかについ ても検証が必要である。その試みの一例として関西圏 の動向についての黒田らによる解析を参照されたい (MSTF2020発表予定)。本研究は JSPS KAKENHI 18K03449 の支援を受けたものである。



図 2: 本解析から得られた実効再生産数(マゼンタ 実線、点線は  $t_d$  の補正無しの場合)と主要駅での 乗降客数比  $n_t$ (シアン破線)の時系列の比較。ス ケーリング関係で確認した通りこれらの曲線は全 体に良い相関を示すが、緊急事態宣言などの時期 に対応したタイミングで乗降客数の変化に依らな い  $R_t$ の急峻な変化が見られる。

## 参考文献

- T. Shimada, Y. Suimon, and K. Izumi, https://arxiv.org/abs/2008.07791.
- [2] https://k-locationanalyzer.com.
# 関西圏における COVID-19 の感染拡大率と外出人数の関係について

# 黒田大地<sup>1</sup>,島田尚<sup>1,2</sup>

# 1 東京大学 工学系研究科 システム創成学専攻 2 東京大学 数理情報教育研究センター

#### 概要

本研究では、関西圏の主要駅周辺での外出人数と COVID-19 の感染拡大率との関係について調べた。その結果は、1) 感染者の感染日から公表日までの遅れ時間が首都圏での同様の解析とほぼ 同じの平均 14 日程度と推定されること、2) 関西圏での感染が収束方向に向かっている期間は外 出人数が 2020 年 1 月比で 40% 程度以上減っている期間と一致すること 3) 大阪府内での感染者 数に占める東京から流入した感染者の数は少ないこと、を示唆していると考えられる。

# The relationship between the spread of COVID-19 and the number of people around major stations in Osaka area

Daichi Kuroda<sup>1</sup>, Takashi Shimada<sup>1,2</sup>

<sup>1</sup> Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo
<sup>2</sup> Mathematics and Informatics Center, The University of Tokyo

#### Abstract

In this paper, we empirically study the relationship between the number of people observed around the main stations and the spread of COVID-19 infection in Kansai-area. Our analysis suggests: 1) Average delay from the true infection day to the report day is around 14 days. (This delay is almost the same with the delay estimated in Tokyo.) 2) In Osaka, about 40% decrease of active population may prevents COVID-19 infectious spread. 3) The number of incoming infections from Tokyo is relatively smaller than the number of infections in Kansai-area.

# 1 はじめに

COVID-19の感染拡大への対策として、外出制限 が行われた。外出制限は社会全体の経済的損失や個々 人の精神的負担が大きい。そこで、感染拡大を防ぎ ながら、外出制限を可能な限り緩くすることが求め られる。これを実現するために、感染拡大率と外出 制限の強さの関係、すなわち、実効再生産数と外出 の割合の関係を知ることは重要である。東京圏につ いては既に実効再生産数と外出の割合の関係につい て研究が行われている [1]。しかしながら、この東京 圏での研究がどれほど普遍的なのか、もしくは地域 に依存しているのかについての研究は行われていな い。そこで本研究では、関西圏について解析を行い、 外出の割合をどれほど減らせば、感染を収束に向か わせることができるかについて評価する。また、東 京圏から関西圏への感染者流入の影響の大きさにつ いても調べる。

# 2 感染拡大率と外出人数の関係

## 2.1 外出制限割合

本研究では大阪府における1日の新規感染報告者数(*J<sub>t</sub>*)と関西圏主要駅(大阪梅田駅、大阪なんば駅、京都駅、神戸三宮駅)周辺の人混み量(*N<sub>t</sub>*)のデータを用いて分析を行う。これらのデータを図1 に示す。外出制限割合を

$$n_t = \frac{N_t}{\bar{N}} \tag{1}$$

と定義する。ここで、*N* は 2020 年 1 月の 1 日あた りの関西圏主要駅人混み量である。



図 1: (上) 大阪府における日毎新規感染報告者数 [2]。(下) 関西圏の主要駅 (大阪梅田駅、大阪なん ば駅、神戸三宮駅、京都駅) 周辺の外出制限割合 [3][4](2020 年 1 月比)。Day は 2020 年 1 月 1 日を 起点 (Day 0) として数えた値(以後の図において も同様)。

## 2.2 実効再生産数

感染症の実質的な感染拡大率を示す指標として、 実効再生産数がある。これは、1名の感染者が治癒 までに何人に感染させるかの各時点における平均を 表す。しかしながら、実効再生産数を直接測定する ことは困難である。そこで本研究では SIR モデルを ベースとした区画モデルを用いて推定する。このモ デルでは、非免疫保持者(S)、感染者(I)、回復者 (R、死亡者も含む)の3つの状態を考え、時点tの それぞれの状態の人数を、 $S_t$ 、 $I_t$ 、 $R_t$ と表す。 $S_t$ 、  $I_t$ 、 $R_t$ は以下の式 (2)で記述される。

$$\Delta S_t = S_{t+1} - S_t = -O_t$$
  

$$\Delta I_t = I_{t+1} - I_t = O_t - \gamma I_t$$
  

$$\Delta R_t = R_{t+1} - R_t = \gamma I_t$$
(2)

ここで、 $O_t$  は時点 t に新たに感染した(状態 S から 状態 I に変化した)人の数を表す。 $\gamma$  は 1 日あたりに 回復(死亡も含む)する感染者の割合を示す。本研 究では、先行研究 [1] に従って、 $\gamma = 14.0^{-1.0}$  [day<sup>-1</sup>] とした。時点 t における実効再生産数( $\mathcal{R}_t$ )は

$$\mathcal{R}_t = \frac{O_t}{\Delta R_t} \tag{3}$$

と表される。

## 2.3 感染日から公表日の遅れ時間

実際に知ることができるのは感染者の感染日では なく、感染者の公表日である。感染日と公表日の平 均遅れ時間を  $t_d$  日とすると、新規感染報告者数は  $J_t = O_{t-t_d}$  であり、計算できる実効再生産数も $R_{t-t_d}$ である。 $\mathcal{R}_t$  と  $n_t$  に正の相関関係があると仮定する と、この相関を最大化する  $t_d$  が遅れ時間の推定とし て得られる。本研究ではスピアマン順位相関係数

$$r_s = \frac{\operatorname{cov}[\mathbf{r}(\mathcal{R}_t), \mathbf{r}(n_t)]}{\sigma[\mathbf{r}(\mathcal{R}_t)]\sigma[\mathbf{r}(n_t)]}$$
(4)

を用いた。ただし、ここで r(x) は順位を、cov[x, y]は共分散を、 $\sigma[x]$  は標準偏差を表す。このスピアマ ン順位相関係数より、 $t_d$  は 14 日と推定した。先行 研究 [1] で行われた東京についての同様の解析では  $t_d$  が 15 日と得られており、この推定結果とほぼ同 じである。以後、 $t_d = 14$  としてこの公表日と感染 日のズレを修正して分析する。

#### 2.4 感染収束に向かう外出制限割合

 $\mathcal{R}_t \ge n_t$ の関係を図 3 に示した。 $\mathcal{R}_t \ge n_t$ の関係 は 1 価の関数にならず、 $n_t < 0.7$ で 2 つのブランチ に分かれている(Day 93 から Day 124 のブランチ と、Day 124 から Day 155 のブランチ)。これは、一 見  $\mathcal{R}_t$  が  $n_t$  以外の変数に強く影響を受けていること を示しているようにも見える。しかしながら、この 形状はむしろ  $\mathcal{R}_t$  が  $n_t$  に強く依存していることを示 しており、ここから  $\mathcal{R}_t$  が 1.0 程度になるのは  $n_t$  が 0.6 程度の時であり、これ以下の  $n_t$  で感染が収束方



図 2: 2020 年 1 月比主要駅周辺の外出制限割合  $n_t$ (青色の破線、軸は左)、 $t_d = 14$ として発症日と公 表日の差を修正済実効再生産数  $R_t$ (黒色の実線、 軸は右)、 $t_d = 0$ とした  $R_t$ の時間発展(黒色の 点線)。

向に向かっていることが読み取れる。まず、2つの ブランチの内上側 (Day 93 から Day 124) のブラン チに着目する。ここからは、 R<sub>t</sub> がおよそ 1.0 とな るのは Day 98 で、この時 nt はおよそ 0.6 程度の時 であることが読み取れる。下側のブランチ (Day 124 から Day 155) では、n<sub>t</sub> = 0.68 程度となる Day149 頃まで  $\mathcal{R}_t$  は 0 に近い値を取り続けた後  $\mathcal{R}_t$  の急激 な増加が見て取れる。これは、上で読み取った、n<sub>t</sub> が 0.6 程度の時 R<sub>t</sub> が 1.0 となるという結果と矛盾 しない。 $\mathcal{R}_t < 1.0$ となる外出制限割合の量 $n_t < 0.6$ では、たとえ関西圏外部からの感染者の流入があっ たとしても、その後感染が拡がることはなかったと 考えられるからである。今回の場合では、n+ が 0.6 程度より大きくなって初めて感染者は増加方向に向 かうことができたと解釈できる。この解釈では、外 出制限割合の回復が直接的な原因となり、関西圏で は、一度感染がほぼ収束した後に再度感染が拡大し たと考えられる。

# 3 東京圏から関西圏への感染者流 入数とその影響の推定

前章の分析手法では、関西圏の COVID-19 感染拡 大率が関西圏の外出制限割合に強く依存していると いう仮定の下行った。関西圏の感染拡大率に影響を 与える他の要因として東京圏から関西圏への感染者 流入というものも考えられる。本章ではこの東京圏 から関西圏への感染者流入数を上から評価し、その 感染者流入の関西圏におけるインパクトの大きさを 上から評価する。



図 3: *n<sub>t</sub>* と *R<sub>t</sub>* の関係。図中の矢印は時間経過の方 向を示している。

#### 3.1 評価方法

東京圏からの感染者流入数が関西圏にもたらす影 響度合いは、

$$F = I_t^{in} / I_t^O \tag{5}$$

で評価する。ここで、 $I_t^{in}$ 、 $I_t^O$ はそれぞれ、時点 tでの東京圏から関西圏への感染者流入数、時点 t で の大阪府での感染者数である。 $I_t^{in}$ の大きさは以下 の式 (6) ~式 (8)を用い、上から評価する。

$$I_t^{in} = M_t I_t^T / P^T \tag{6}$$

$$M_t < a M_t^E \tag{7}$$

$$M_t^E < bD_t^s \tag{8}$$

ここで、 $I_t^{in}$  は時点tでの東京圏から関西圏への感 染者流入数、 $I_t^T$  は時点tでの東京都における感染者 数、 $P^T$  は東京都の人口、 $M_t$  は時点tの東京圏から 関西圏への移動者数、 $M_t^E$  は時点tの東京圏から関 西圏への新幹線利用者数、 $D_t^s$  は時点tにおける品川 駅利用者数を表している。式(7)中のaは東京圏か ら関西圏への移動者の総数が東京圏から関西圏への 新幹線利用者数の何倍より少ないかを表し、(8)式 中のbは東京から関西圏への新幹線利用者数が品川 駅周辺の人混みの量の何倍より少ないかを表す。

式 (7) の *a* については、東京から関西圏への主な 移動手段が新幹線であることを考え、*a* = 2.5 とすれ ば十分であると考え、本研究ではこの値を採用した。 次に、式(8)のbの値について考える。新幹線利用 者数については、前年比月次データは利用可能であ る。このデータと、品川駅周辺の人混みデータを前 年比月次形式にしたものを比較した。その結果、図



図4:前年比月次東海道新幹線利用者数(実線、2020 年4月~8月分については新幹線大阪口合計[6]、 2020年1月~3月分については新幹線合計[7])と 品川駅周辺の人混みの前年比月次量(破線)

4 に示した通り、新幹線利用者数は品川駅周辺の人 混みの減りと同等かそれ以上の減りを見せている。 このことから、式 (8) の *b* については、

$$b < \frac{M_{2018}}{D_{2019}^s} = 0.635 \tag{9}$$

とすると、十分であると考えb = 0.635を採用した。 ここで、 $M_{2018}$ は 2018 年度の新大阪、京都、新神 戸駅の1日あたり新幹線乗降者数の合計値 [5] の半 分、 $D_{2019}^{s}$ は 2019 年度の1日あたり品川駅周辺の人 混みである。

以上から東京からの流入者数(I<sup>in</sup>)は、

$$I_t^{in} < abD_t^s I_t^T / P^T \tag{10}$$

と推定できる。

# 3.2 結果

図 5 からわかるように、 $F = I_t^{in}/I_t^O < 0.25$  と低 い値となっている。ここから、東京からの感染者流 入数は関西圏の感染者数より少なく、 $\mathcal{R}_t$ の大きさ を関西圏の感染者以上に左右する要因にはならない であろうことが示唆される。このことは、第 2.4 節 で述べた、外出制限割合の回復が直接的な原因とな り、関西圏では、一度感染がほぼ収束した後に再度 感染が拡大したという主張を補強する。

# 4 まとめ

本研究は、関西圏では感染者の公表日と感染日の 差が平均14日程度であること、関西圏では2020年



図 5: 東京圏から関西圏への感染者流入の関西圏に おける影響の大きさ F の推定上限値の時系列

1月比で4割程度人混みが減っている時期と感染が 収束に向かっている時期が一致すること、大阪府内 での感染者数に占める東京から流入した感染者の数 は少ないこと、を示唆していると考えられる。

本研究は JSPS KAKENHI 18K03449 の支援を受けたものである。

# 参考文献

- T.Shimada, Y.Suimon, K.Izumi, https:// arxiv.org/abs/2008.07791.
- [2] http://www.pref.osaka.lg.jp/iryo/ osakakansensho/corona.html.
- [3] https://k-locationanalyzer.com.
- [4] Y.Suimon, https://www.jcbconsumptionnow. com/en/info/news-57.
- [5] https://www.jrta.co.jp/pdf/JR\_MEDIA\_ GUIDE\_2020\_all.pdf(閲覧日:2020/11/05).
- [6] https://company.jr-central.co.jp/ir/
   passenger-volume/\_pdf/000040326.pdf(閲覧
   日:2020/11/05).
- [7] https://company.jr-central.co.jp/ir/
   passenger-volume/\_pdf/000039526.pdf(閲覧
   日:2020/11/05).

# 周回方向制限による対面時間の削減効果について

# 川口寿裕1

#### 1関西大学 社会安全学部 安全マネジメント学科

#### 概要

COVID-19 の感染拡大に鑑み、スーパーマーケット等における周回方向を一方通行に制限することによる、歩行 者同士の対面時間の削減効果について数値シミュレーションを実施する。歩行者挙動は仮想バネモデルと反モ ーメントモデルを導入した離散要素法で表現した。歩行者同士が近距離で対面する時間の累積値で感染症拡大 リスクを評価する。対向する歩行者の割合と累積対面時間の関係から、周回方向制限の効果と、ルール遵守の必 要性について示す。

# Reduction of Facing Duration by Restricting Circling Direction

Toshihiro Kawaguchi<sup>1</sup>

<sup>1</sup>Department of Safety Management, Faculty of Safety Science, Kansai University

#### Abstract

Considering the spreading of COVID-19, a numerical simulation was performed to evaluate the effect of the restriction of the circling direction on the facing duration between pedestrians in supermarkets and so on. The behavior of pedestrians was expressed by the Discrete Element Method introducing the virtual spring model and the reactive torque model. The spread risk of infection was evaluated by the cumulative value of the duration in which pedestrian in a short distance face each other. The relation between the ratio of opposite circling and the cumulative facing duration shows the effect of the restriction of the circling direction and the necessity of observance of the regulation.

# 1 はじめに

新型コロナウイルス感染症(COVID-19)が世界的な 感染拡大を続け、日本でも多くの感染者を出している。 日本ではクラスター対策を主眼とし、密を避けるという 方向性で COVID-19 への対策を進めている。不要不 急の外出を控えることも対策の1 つとして要請されてき たが、食品や日用品の買い物には定期的に出かける 必要がある。その際、スーパーマーケット等で密が発生 することで感染拡大に繋がる可能性がある。

厚生労働省が配布している新型コロナウイルス接触 確認アプリ(COCOA)では、ウイルス保有者の「1 メート ル以内に15分以上」滞在した場合を「接触」と判定して いる[1]。さらに、互いに正対している状態にあるときに 感染リスクが高まることは容易に想像できる。

スーパーマーケット等の周回通路を逆方向に周回す る人が混在すると、人同士の対面時間が長くなると考え られる。周回方向を制限し、一方通行にすることで対面 時間の削減に繋がると期待できる。ただし、スーパーマ ーケット等で一方通行のルールを厳格に遵守させるこ とは難しいとも考えられる。

本研究では、簡単な周回通路を想定し、周回方向を 制限することにより、歩行者同士の対面時間がどれだ け削減されるかについて、数値シミュレーションで評価 することを試みる。歩行者の挙動は仮想バネモデルお よび反モーメントモデル[2]を組み込んだ離散要素法 [3]でモデル化する。周回方向制限の効果を定量的に 評価するとともに、一方通行のルールを守らずに逆方 向に周回する人が混在したときの対面時間の変化につ いても調べる。



図 1: DEM 接触力モデル

# 2 計算手法

## 2.1 離散要素法

離散要素法(Discrete Element Method : DEM)は相 互作用を及ぼしながら移動する個々の粒子挙動を解 析する手法である。土木工学[4]、粉体工学[5]、粒子系 混相流[6]などの分野で用いられてきたが、近年は歩行 者流[7]にも適用されている。

離散要素法では互いに接触した粒子同士の相互作 用力をバネ、ダッシュポット、スライダで表現する(図 1)。 バネは弾性反発力を表し、ダッシュポットは非弾性衝突 を表現するための粘性減衰力を意味する。スライダは すべり摩擦(動摩擦)を表す。

離散要素法における法線方向および接線方向の接 触力は次式で与えられる。

$$\overrightarrow{f_{C_n}} = \left(-k_n \delta_n - \eta_n \overrightarrow{V_{ij}} \cdot \vec{n}\right) \vec{n} \tag{1}$$

$$\overrightarrow{f_{C_t}} = \min\left[-k_t \overrightarrow{\delta_t} - \eta_t \overrightarrow{V_{sij}}, -\mu_f \left| \overrightarrow{f_{C_n}} \right| \overrightarrow{t}\right]$$
(2)

ここで、kはバネ定数、 $\delta$ は変形量、 $\eta$ は粘性減衰係数 を表し、添字 n, tはそれぞれ、法線方向、接線方向を 意味する。 $\mu$ は摩擦係数、 $V_{ij}$ は粒子iと粒子jの相対速 度、 $V_{sij}$ は粒子iと粒子jの接触点における接線方向相 対表面速度である。nは法線方向単位ベクトル、iは接 線方向単位ベクトルである。式(2)の記号 min[A,B]はA, Bのうち絶対値の小さい方をとることを意味する。すな わち、接線方向接触力が小さいときには静止摩擦が作 用し、しきい値を超えると動摩擦に切り替わることを表 現している。

#### 2.2 自己駆動性

離散要素法は岩石や粉体粒子などの挙動を表現す るために用いられてきたものであり、歩行者の挙動に適 用するには自己駆動性を付与する必要がある。本モデ ルでは静的フロアフィールド[8]を用いて歩行者の移動 目的方向を与えた。

本計算では、ノイマン近傍を用い、移動目的方向は

上下左右の4方向のみで、斜め方向は選択しないもの とした。離散要素法における粒子は連続空間上を移動 するのに対し、静的フロアフィールドは離散空間上で 与えられる。つまり、静的フロアフィールドのグリッドを 跨ぐ際に粒子の移動目的方向が離散的に変化するこ とになる。ただし、離散要素法における歩行者粒子に は慣性があるため、粒子は静的フロアフィールドで選 択された方向に向かってただちに移動するわけではな く、連続的に移動方向を変えることになる。

# 2.3 仮想バネモデル

通常、前方に別の人がいることに気付くと、歩行者は 速度を緩めるか方向を変えることで衝突を避けようとす る。このことを表現するために、仮想バネモデル[2]を導 入する。

図2に示すように、歩行者が前方に別の歩行者を認 識した場合、両者の距離に比例した弾性力を作用させ る。このことで、速度を緩める動作と前方の歩行者を回 り込む動作の両方を表現できることになる。他の歩行者 の影響を受けて仮想バネを作用させるのは、

(i) 自分から一定の距離内にいる

(ii) 一定の視野の範囲内にいる

の両条件を満たしたときのみとする。具体的には、図 2 の歩行者Aは歩行者Bを認識して仮想バネによる力を 受けるが、歩行者CやDは一定の距離外にいるため影 響を受けず、歩行者EやFは視野外にいるため影響を 受けない。また、歩行者Bから見ると歩行者Aは視野 外にいるため影響を受けない。つまり、仮想バネによる 力については作用・反作用の法則は必ずしも成り立た ない。

#### 2.4 反モーメントモデル

離散要素法では接線方向の力により回転運動が生 じるが、回転に対する抵抗力は働かない。また、歩行 者は基本的に目標方向に正対しながら歩行する。本計 算では、反モーメントモデル[2]を導入することで粒子 の回転に対する抵抗を与え、歩行者が目標方向に正





対しながら歩行する行動を表現する。

図3に示すように、歩行者の向きが目標方向からず れた場合、ずれを修正する方向にトルクを作用させる。 本計算では、反モーメントT,をずれ角のに比例するよう に与えた。ただし、ずれ角に比例するトルクだけでは回 転の振動が生じるため、図1におけるダッシュポットと同 様に角速度に比例する減衰項も加えた。したがって、 反モーメントT,は次式で与えられる。

$$T_r = -k_r \theta - \eta_r \omega \tag{3}$$

ここで、 $k_r$ ,  $\eta$ , は比例定数であり、 $\omega$ は粒子の回転角速度である。

# 3 結果と考察

## 3.1 計算条件

主な計算条件を表1にまとめる。歩行者は直径0.4m の円形粒子で模擬する。仮想半径を1.0m、視野角を 左右60度ずつの120度とした。静的フロアフィールド (SFF)は0.1m×0.1mの正方形グリッドとした。

図4に示すように、20m×20mの矩形領域内の外周 部に幅4mの通路を設定した。下部中央の幅10mの出 入り口から歩行者が流入・流出する。領域内の歩行者 の最大人数は40人とした。

| 歩行者質量       | 60                  | kg   |
|-------------|---------------------|------|
| 粒子直径        | 0.4                 | m    |
| 歩行者粒子数      | 40                  | 個    |
| 物理バネ定数      | $1.0 \times 10^{5}$ | N/m  |
| 仮想バネ定数      | $2.0 \times 10^{4}$ | N/m  |
| 仮想半径        | 1.0                 | m    |
| 粘性減衰係数      | 350                 | Ns/m |
| 視野角         | 120                 | deg  |
| 反モーメント係数    | 50                  | Nm   |
| モーメント減衰係数   | 100                 | Nms  |
| SFF グリッドサイズ | 0.1                 | m    |

表1: 主な計算条件



図4:計算領域

#### 3.2 計算結果

時計回り(赤色)と反時計回り(青色)の歩行者が20 人ずつの場合(対向割合0.5)の計算結果の一例を図5 に示す。両方向の歩行者ともコーナーの内側を通る確 率が高くなるように静的フロアフィールドを設定している ため、各コーナーで歩行者同士が滞留する様子が見ら れた。これは朝霧歩道橋事故の数値シミュレーションで Tsuji[9]が指摘したものと同様である。

次に全歩行者の周回方向を時計回りに限定した場合(対向割合 0.0)の計算結果の一例を図 6 示す。この場合には歩行者の滞留はほとんど見られず、スムーズな周回行動となった。

ウイルスの感染拡大を考えたとき、人同士が近距離 で対面する時間の長さが鍵となる。ここでは、歩行者同 士の距離が 1m 以内で、かつ両者の顔の向きが正対か ら±10 度以内であるときを「対面している」と定義し、全 歩行者の累積対面時間を求めた。本計算において、 歩行者の流入タイミングや位置はランダムであるため、 対向割合 0.5 の場合について 20 回計算を行い、累積 対面時間の平均値を求めたところ、34.5 秒であった。



図 5: 計算結果例(対向割合 0.5)



図 6: 計算結果例(対向割合 0.0)

一方、対向割合が 0.0 の場合には累積対面時間の平 均値は 0.98 秒であった。つまり、周回方向を制限する ことで対面時間が 35 分の 1 程度に短縮されている。こ のことから、周回方向を制限して対面通行を避け、一方 通行の流れを作ることで、歩行者同士が近距離で対面 する機会を大きく減らせることがわかる。

しかし、スーパーマーケット等では一方通行のルー ルを全員に遵守させることは難しいかも知れない。図 7 に対向割合を変化させたときの累積対面時間の変化を 示す。両者の関係が上に凸のグラフを描いていること から、一方通行のルールを守らない歩行者が少数混在 するだけで、歩行者同士が近距離で対面する機会が 大きく増加することを示唆している。例えば、対向割合 が 0.1 のとき、累積対面時間は 14.3 秒である。つまり、 40 人のうち 4 人が逆方向に周回するだけで、全員が同 じ方向に周回しているときに比べて、対面時間が 15 倍 近くまで増大している。

以上のことから、周回方向を制限することは歩行者 同士が近距離で対面する機会の大幅な減少に繋がる



図7:対向割合と累積対面時間の関係

可能性が高いものの、ルール遵守を徹底しなければ、 その効果は希薄になってしまうと言える。

# 4 まとめ

仮想バネモデルおよび反モーメントモデルを組み込 んだ離散要素法を用いて、簡単な周回通路における 歩行者挙動の数値シミュレーションを行った。歩行者同 士の対面時間を定義し、逆方向に周回する歩行者の 割合との関係を調べた。

その結果、周回方向が完全にランダムな場合に比べ て、全員が一方通行になった場合には対面時間が 35 分の1程度になることを示した。ただし、1割の人が一 方通行のルールに従わないだけで、全員がルールを 遵守する場合に比べて対面時間は15倍程度に増加し た。このことから、対面時間を効果的に減少させるため にはルールを厳格に遵守させる工夫が必要であること が示唆された。

# 謝辞

本研究は JSPS 科学研究費補助金基盤研究(C) (課 題番号:19K04936)の支援を受けた。記して謝意を表 する。

# 参考文献

[1] 厚生労働省ホームページ,新型コロナウイルス接触確認アプリ,

https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/co coa\_00138.html (2020 年 11 月 3 日確認).

- [2] 川口寿裕, 第 20 回交通流のシミュレーションシン ポジウム論文集 (2014) 83.
- [3] P.A.Cundall, O.D.L.Strack, Geotechnique **29-1** (1979) 47.
- [4] 木山英郎,藤村尚,土木学会論文報告集 333 (1983) 137.
- [5] 日高重助,金星直彦,三輪茂雄,粉体工学会誌 26-2 (1989) 77.
- [6] 川口寿裕,田中敏嗣,辻裕,日本機械学会論文 集(B編) 58-551 (1992) 2119.
- [7] 清野純史,三浦房紀,瀧本浩一,土木学会論文 集 537 (1996) 233.
- [8] Burstedde, C. et al., Physica A 295 (2001) 507-525.
- [9] Y.Tsuji, Pedestrian and Evacuation Dynamics 2003 (2003) 27.

# Multi-Layerモデルにおける待ち伏せ型捕食者の 空間パターン形成

中桐斉之<sup>1</sup>, 向坂幸雄<sup>2</sup>

#### 概要

従来のメタ個体群モデルでは、生物個体は自由にパッチ間を移動していた。しかし、現実の生息 地においては、パッチの空間には限りがある。本報告ではアリジゴクのような待ち伏せ型捕食者 を Multi-Layer モデルを用いてシミュレーションによって解析した。その結果、パッチ間移住に 「渋滞」が発生するため、共存が起こることが分かった。これは従来のメタ個体群動態からは得 られなかった結果で、待ち伏せ型捕食者が高密度分布していても、結果的に餌生物の移住の渋滞 効果により食べ尽くしが起きず共存できるためであることがわかった。

# Spatial pattern formation of ambush predators in a multi-layered model

Nariyuki Nakagiri<sup>1</sup> and Yukio Sakisaka<sup>2</sup>

 $^1$ School of Human Science and Environment, University of Hyogo $^2$ Division of Early Childhood Care and Education, Nakamura Gakuen Junior College

#### Abstract

In the conventional metapopulation model, individuals were free to move between patches. However, in real-life habitats, the patch space is limited. In this report, ambush-type predators such as antlions were analyzed by simulation using a multi-layered model. It was found that "traffic jam" occurs in the migration between patches, so that prey and predator coexist. This is a result that could not be obtained from conventional metapopulation dynamics. It was found that even if the ambush-type predators are distributed at high density, they can coexist without being exhausted due to the traffic-jam effect of the migration of prey organisms.

# 1 はじめに

アリジゴクやクモのような待ち伏せ型捕食者の中 には、密集化分布という奇妙な空間分布をとるもの がいることが知られている。アリジゴクはウスバカ ゲロウの幼虫で、すり鉢型の巣穴(クレーター)を作 り、巣穴に落ちてきた虫に砂をかけ底に落として捕 食する、待ち伏せ型の捕食者の一種である。その巣 穴は集中分布していることが多い。なぜ密集してい ても餌を食べ尽くしてしまわないのか? 多くの人 は、アリジゴクは自らにとって環境の良い所に集ま るという環境密度理論[1]など、効率の最適化によっ て説明しようとしている。しかし、それらが上手く 説明ができているとは言い難い。本研究では複数の 正方格子を用いたモデル(以下、Multi-Layerモデ ル)による解明を考える。これは、パッチの許容量 が有限であるという Yokoi らの提案した非線形拡散 モデル[2, 3]を発展させた空間モデルである。本研

<sup>&</sup>lt;sup>1</sup> 兵庫県立大学環境人間学部環境人間学科 <sup>2</sup> 中村学園大学短期大学部幼児保育学科

究では、仮想格子空間上の個体群動態をシミュレー ション解析することで、餌、捕食者両種が共存する 条件を調べた。

# 2 Multi-Layer モデル

アリジゴクが巣穴を作るためには砂地であること や水分含有率などの条件が必要である。このような 条件を満たす生息領域はパッチ状に分布する。ここ ではモデル構造を単純化するために生息領域として 2つの正方格子(レイヤー)を考える。なぜなら1 レイヤーで考えるならば多くの条件設定が必要とな るからである。格子*i*における、格子点(セル)の 総数を*Ci*とする(*i* = 1,2)。各セルは次の3状態の うち1つをとる:餌(X)、捕食者(Y)、空地(O)。餌 はアリなどの往来型生物を想定、捕食者はアリジゴ クなどの待ち伏せ型捕食者を想定する。セル間の相 互作用は通常の餌・捕食者モデルで表す[4]。

$$Y + X \xrightarrow{p} Y + Y \tag{1}$$

$$X + O \xrightarrow{r} X + X$$
 (2)

$$X \xrightarrow{a_X} O$$
 (3)

$$Y \xrightarrow{a_Y} O$$
 (4)

ここで、反応 (1) は Y の捕食プロセスで捕食率を pとする。反応 (2) は X の増殖プロセスで増殖率を rとする。また反応 (3) および (4) は、それぞれ生物 個体Xまたは Y の死亡プロセスである。X および Y の死亡率を  $d_{X}, d_{Y}$  とする。

伝統的なパッチ環境のモデルでは、パッチ間の移 動(移住)の際、図1(a)のようにパッチの許容量を 考慮せずに移動可能であった。しかし、Yokoi らの モデル [2] は、パッチの許容量を考慮したモデルとし ている。このモデルに対し、本研究ではパッチを格 子空間(レイヤー)とし、複数の格子空間(レイヤー) 間を移動可能とする Multi-Layer モデルを用いるこ とでレイヤー許容量を考慮したモデルを構築した。 このモデルでは移動の際に、図1(b)のように移動先 のレイヤーにOが存在しているときのみに移動可能 とする。このような仮定(排除体積効果)は、交通 流では不可欠である。なぜなら、この仮定が無けれ ば渋滞は起きないからである。しかし、伝統的なメ タ個体群 (図 1(a)) ではこのような仮定は行われてい ない。また、Layer 内での反応を隣接格子間に限定 することで、個体の位置関係を考慮することができ るモデルとした。



図 1: 移動モデル。餌 X がレイヤー 2 から 1 へ移動 する場合。(a) 従来のメタ個体群モデル:制限なく 移動できる。(b)Multi-Layer モデル:X は空地(O) にのみ移動できる。



図 2: 個体群動態の時間変化。レイヤー1のサイズは、C1 = 10000、レイヤー2のサイズはC2 = 40000。(a)  $d_{\rm Y} = 0.4$ 、(b)  $d_{\rm Y} = 0.01$ 。

このモデルを用いて、計算機シミュレーションに よる解析を行う。シミュレーション方法は、反応と 移動(拡散)のプロセスを交互に行うこととし、次 の(A),(B)を行った:

- (A) 初期配置として、レイヤー1にXとYをレイ ヤー2にはXのみをランダムに配置する。
- (B) 以下の(i)(ii)を格子数C(C = C1 + C2)回繰り返し1モンテカルロステップ(MCS)とする。
  - (i) 反応プロセス: 全ての反応は同一レイヤー内部で行う。ここで 反応(1)と(2)は、隣接セル間(ノイマン近傍) でのみ行う。具体的には、隣接2点をランダム に取り、2点がYとXであった場合は捕食率pでXをYに変える(反応(1))。XとOならば 増殖率rでOをXに変える(反応(2))。ここ で、それぞれの格子は周期境界条件とする。次 に、ランダムに1点をとり、それがXであった 時は死亡率 $d_X$ でXをOに変える(反応(3))。 Yであった時、死亡率 $d_Y$ でYをOに変える (反応(4))。餌しかいないレイヤー2では反応 (2),(3)のみが起こる。
- (ii) 移動プロセス:

異なるレイヤー間のみで餌 (X) だけが移動率 *m*で移動できる。このとき図1 (b)の様に移動 先が空地 (O) である場合だけ移動可能と仮定 する。具体的には2つのレイヤー全体からラン ダムに1点を取り、その点が存在しないもう一 方のレイヤーからランダムに1点を選ぶ。2点 が X と O のとき移動率 *m* で両者を交換する。

# 3 シミュレーション結果

個体群動態は図 2 のようになる (パラメータは、  $p = 1.0, r = 1.0, m = 1.0, d_X = 0.03$ )。ここ で、格子サイズを  $C1 = 10000(=100 \times 100), C2 =$   $40000(=200 \times 200)$ とし、死亡率を (a) $d_Y = 0.4$ 、 (b) $d_Y = 0.01$ とした。桃色プロットは捕食者 (Y)の 密度であり、レイヤー1にのみ存在する。水色と紺 色のプロットは、それぞれレイヤー1とレイヤー2 での餌 (X)の密度である。図 2より、やがて系は定 常状態となることが分かる。図 2(b)は、従来のメ タ個体群動態からは得られなかった結果で、両レイ ヤーの移住者 (餌 (X))の密度は等しくない。従来



図 3: 死亡率 d<sub>Y</sub> の変化に対する個体群密度の変化。C1 = 10000、C2 = 40000。



図 4: 定常状態での空間パターン。紺色と水色は 餌 (X) 桃色は捕食者 (Y) を示す。左側はレイヤー 1(C1 = 10000)、右側はレイヤー 2(C2 = 40000)。 $(a) <math>d_Y = 0.4$ 、(b)  $d_Y = 0.01$ 。(b) は、従来の メタ個体群動態からは得られなかった結果である: 移住者 (餌 X) の密度が両レイヤーで等しくない。 レイヤー2には餌 X が高密度であるにもかかわら ず、レイヤー1 での X は絶滅寸前である。 のメタ個体群動態では、移住者が両レイヤー間を自 由に行き来できるため、両レイヤーの定常密度は等 しくなり、死亡率 $d_Y$ が小さくなると、餌の絶滅が両 レイヤーで同時に起きる。しかし、Multi-Layer モ デルでは、自由な移動は許されない。レイヤー2は 餌 (X) が高密度であるにもかかわらず、レイヤー1 での餌 (X) は絶滅寸前となっている。

図3では、捕食者が絶滅しない区間での各生物の 定常密度が、捕食者と餌に共通する死亡率 d<sub>Y</sub> に対 してプロットされている。図3において、d<sub>Y</sub> が0に 近づいても、餌はレイヤー1とレイヤー2で同時に 絶滅が起こることはない。この定常密度の結果は、 伝統的なメタ個体群では観測されない現象である。 すなわち、餌 (X) はレイヤー1では実質的な絶滅状 態となっても、絶滅していないレイヤー2から移住 が起き続けるため、完全な絶滅は起きない。

定常状態での空間パターンを図4に示す。図4(a) は、 $d_{\rm Y} = 0.4$ 、レイヤー1のサイズがC1 = 10000、 レイヤー2のサイズがC2 = 40000のとき、捕食者 にとってそれほど環境は良くないが、餌も捕食者も すべて適当な密度を持っている。しかし、死亡率を d<sub>Y</sub> = 0.01 とした場合は、図 4(b) のようになり捕食 者が高密度になっていることが分かる。このときは、 図 4(a) とは異なり捕食者にとって環境が良くなって いる(低死亡率)ため、レイヤー1では捕食者が増 加し、餌がほとんどいないにも関わらず、餌と捕食 者が共存している。これは、レイヤー1には餌がい なくても、移動によってレイヤー2から常に餌が供 給されているためである。これまでレイヤー1のサ イズがレイヤー2より小さい場合のみを示してきた。 逆にレイヤー1のサイズがレイヤー2より大きい場 合でも同様なことが起きる (図 5)、また、レイヤー 1のサイズがレイヤー2と等しい場合でも同様であ り、レイヤーのサイズには依存しない。

# 4 考察・まとめ

アリジゴクの巣穴は集中分布していることが多い。 なぜ密集していても餌を食べ尽くしてしまわないの か? 環境密度理論 [1] など、従来の餌捕獲効率の 最適化では、うまく説明できているとは言い難かっ た。そこで、本研究では Multi-Layer モデルによる 解明を試みた。

捕食者のレイヤーと餌のレイヤーをつなぐとき、 排除体積効果を考慮すると、従来のメタ個体群では 見られなかった2レイヤーでの餌と捕食者の共存が

見られることが分かった。とくに、捕食者の環境が 良くなると、捕食者は高密度でも共存し、すみ分け をしているようなパターンが見られる (図 4(b))[3]。 この理由は次のように考えられる。図4において、 (a) では Y にある程度死亡率が存在するため空き地 が発生し、そこに侵入した X により水色がある程度 存在する。(b)は死亡率が低いためYの密度が高く なる。餌はレイヤー2からレイヤー1に移動する際、 XかYが存在する(Oではない)ため移動が阻害さ れ「渋滞」が発生する。その結果、レイヤー2の密 度は増加する。このようにして、両レイヤーのすみ 分けが起こると考えられる。ゆえに、捕食者が密集 化し、餌を食べ尽くしてしまう程の高密度となって も、共存することが可能なのは、レイヤー間移動に 渋滞が起きると、待ち伏せ型捕食者が高密度になっ ても、他のレイヤーでの餌が増殖が続き、餌が供給 され続けるためであると考えられる。ここでの結論 は、待ち伏せ型捕食者に共通して適用できると考え る。例えばクモでも同じような原因で密集化をして も共倒れが起きないと考えられる。



図 5: 死亡率  $d_Y$  の変化に対する個体群密度の変化。 $C_1 = 40000, C_2 = 10000$ 。

# 参考文献

- [1] 森下正明, 日本生態学会誌 4 (1954) 71-79.
- [2] Yokoi, H., Tainaka, K. and Sato, K. J. Theor. Biol. 477 (2019) 24-35.
- [3] Yokoi, H., Tainaka, K., Nakagiri, N. and Sato, K. Ecological Informatics 55 (2020) 101022.
- [4] Nakagiri, N., Sakisaka, Y., Togashi, T., Morita, S., Tainaka, K., Ecol. Info. 5 (2010) 241-247.

# リーダー細胞に誘導される集団細胞回転

松下勝義, 薮中俊介<sup>A</sup>, 橋村秀典<sup>B</sup>, 桑山秀一<sup>C</sup>, 藤本仰一

阪大院理 生物, <sup>A</sup> 九大院理 物理, <sup>B</sup> 東大総合文化 相関基礎, <sup>C</sup> 筑波大 生命環境

#### 概要

生物系においては細胞の集団での回転運動がしばしば現れる.我々はこれらの回転運動の誘導要因がリーダー細胞である可能性について調べた.この目的の下,我々はリーダー細胞が異種分子細胞間接着に持続的な極性を持つことを仮定し,細胞 Potts 模型を基に集団細胞回転運動の模型を構成した.そして,リーダー細胞がこの回転運動を誘導する可能性を示した.

# Leader-guiding collective cell rotation

### Katsuyoshi Matsushita, Sunsuke Yabunaka<sup>A</sup>, Hidenori Hashimura<sup>B</sup>, Hidekazu Kuwayama<sup>C</sup>, and Koichi Fujimoto

Department of Biological Science, Graduate School of Science, Osaka University. <sup>A</sup>Department of Physics, Graduate School of Science, Kyushu University. <sup>B</sup>Department of Basic science, Graduate School of Arts and Sciences, The University of Tokyo. <sup>C</sup>Faculty of Life and Environmental Sciences, University of Tsukuba.

#### Abstract

In biological systems, collective rotations frequently appear in cell aggregations. We examine leader cells as a possible guide for these collective rotations. For this purpose, we model the multicellular system based on the cellular Potts model for these rotations by assuming the persistently-polarized heterophilic cell-cell adhesion of leader cells. We show a possibility that the leaders guide these rotations.

# 1 Introduction

In developmental processes in biological systems, eukaryotic cells collectively and spontaneously move to their suitable positions for their fates [1]. One of the spontaneous collective movements is a persistent collective rotation of cell aggregations [2–4]. For example, this rotation sorts out Dictyostelium discoideum cells by their fates [3,5]. This rotation has been investigated by biologists and its guiding mechanisms were speculated to be chemotaxis [6,7] and molecular chirality [8]. In addition to these mechanisms, the persistence of the rotation lets us deduce the persistent motility in individual cells [9, 10]. This rotation, however, is naively contradictory to the persistent motility, because the persistent motility seems to stabilize only the unidirectional order of movements instead of the rotation [11–15]. Therefore, improvements for matching these mechanisms to the persistence is necessary for the understanding of the collective cell rotations.

As such an improvement, the contact following was theoretically considered and successfully reproduced the rotation [6,7,16,17]. Because the contact following is implemented by the Vicsek-like interaction based on visual recognition [18], it is not simply supposed for natural cells in contrast to birds or fishes. As an alternative improvement independent of such recognition, we focus on the effects of the leader cells which drag the surrounding cells [19]. Namely, we hypothesize that the leader cells guide the rotation. In this case, only the leader cells have the persistent motility, while the surrounding cells do not. Hereinafter, we call the surrounding cells follower cells for convenience in explanation. This hypothesis is based on the fact that leader cells cannot stabilize the unidirectional order in their low concentrations below a certain threshold value necessary for the order.

In the present work, to examine this hypothesis, we model these leading and follower cells based on the cellular Potts model [19, 20]. As a test case of this hypothesis, we consider a persistent motility due to the persistently-polarized heterophilic cellcell adhesion between leader and follower cells [21] for tractability in this model. By this model, we confirm that the leaders successfully guide these rotations by avoiding the unidirectional order in the case of a few leaders.

# 2 Model

For our purpose, this work utilizes the twodimensional cellular Potts model. In this model, cell configurations are represented as Potts states  $m(\mathbf{r})$ 's. Here,  $\mathbf{r}$  is a coordinate in a square lattice with linear dimensions of L.  $m(\mathbf{r})$  takes a number in  $\{0, 1, 2, \ldots, N\}$ .  $m(\mathbf{r})$  is the cell index occupying  $\mathbf{r}$  except for  $m(\mathbf{r}) = 0$ , which is no cell at  $\mathbf{r}$ . The fixed number N is the number of cells. These cells belong to two types of cells with  $\tau(m) = 1$  and 2.  $\tau(m) = 1$  indicates that the *m*th cell is a leader cell with a polarity vector  $\mathbf{p}_m$  and  $\tau(m) = 2$  indicates that the *m*th cell is an unpolarized cell. We additionally set  $\tau(0) = 0$ . By sampling the consecutive series of these Potts states with Monte Carlo simulation, we simulate the cellular dynamics.

For this simulation, the realization probability for each Potts state is given by the Boltzmann weight  $\exp(-\beta \mathcal{H})$ . Here,  $\mathcal{H}$  is Hamiltonian,

$$\mathcal{H} = \sum_{\tau} \mathcal{H}_S^{\tau} + \mathcal{H}_A + \mathcal{H}_B, \qquad (1)$$

and  $\beta$  is an inverse temperature.

The first term in the RHS of Eq. (1) is the surface term

$$\mathcal{H}_{S}^{\tau'} = \gamma_{C}^{\tau'} \sum_{\boldsymbol{rr'}} \delta_{\tau'\tau(m(\boldsymbol{r}))} \delta_{\tau'\tau(m(\boldsymbol{r}'))} \eta_{m(\boldsymbol{r})m(\boldsymbol{r}')} + \gamma_{E}^{\tau'} \sum_{\boldsymbol{rr'}} \eta_{m(\boldsymbol{r})m(\boldsymbol{r}')} \left[ \delta_{\tau'\tau(m(\boldsymbol{r}))} \delta_{0m(\boldsymbol{r}')} \right. + \left. \delta_{m(\boldsymbol{r})0} \delta_{\tau'\tau(m(\boldsymbol{r}'))} \right], \qquad (2)$$

where  $\gamma_{\rm C}^{\tau}$  is the surface tension of cellular interfaces for type  $\tau$ ,  $\gamma_{\rm E}^{\tau}$  is that between cells with type  $\tau$  and the empty space.  $\eta_{nm}$  is  $1 - \delta_{nm}$  and  $\delta_{nm}$  is the Kronecker  $\delta$ . The summation between  $\boldsymbol{r}$  and  $\boldsymbol{r'}$  is taken over the nearest and next nearest pairs. This summation rule is commonly applied hereinafter.

The second term in the RHS of Eq. (1) is an additional surface term [21],

$$\mathcal{H}_{A} = \sum_{\boldsymbol{rr'}} \eta_{\tau(m(\boldsymbol{r}))\tau(m(\boldsymbol{r'}))} \eta_{\tau(m(\boldsymbol{r}))0} \eta_{\tau'(m(\boldsymbol{r}))0} \\ \times \left[ \gamma_{H} - \gamma_{p} \left( \boldsymbol{p}_{m(\boldsymbol{r})} \cdot \boldsymbol{e}_{m(\boldsymbol{r})}(\boldsymbol{r}) \delta_{1\tau(m(\boldsymbol{r}))} \right. \\ \left. + \left. \boldsymbol{p}_{m(\boldsymbol{r'})} \cdot \boldsymbol{e}_{m(\boldsymbol{r'})}(\boldsymbol{r'}) \delta_{1\tau(m(\boldsymbol{r'}))} \right) \right], \quad (3)$$

which expresses the heterophilic cell-cell adhesion on the interface between the leader cells and follower cells.  $\gamma_H$  is the strength of surface tension and  $\gamma_p$  is the polarized component of the heterophilic adhesion [22, 23].  $\boldsymbol{e}_m(\boldsymbol{r})$  is a unit vector indicating from  $\boldsymbol{R}_m$  to  $\boldsymbol{r}$ , where  $\boldsymbol{R}_m$  is the center of the *m*th cell as a parameter of adhesion molecule density [24]. The unit vector  $\boldsymbol{p}_m$  that is the adhesion polarity of the *m*th cell,

$$\frac{d\boldsymbol{p}_m}{dt} = \nu \left[ \frac{d\boldsymbol{R}_m}{dt} - \left( \frac{d\boldsymbol{R}_m}{dt} \cdot \boldsymbol{p}_m \right) \boldsymbol{p}_m \right].$$
(4)

The equation indicates the dynamics of  $p_m$  following the polarity of cytoskeletal polarization in the direction of  $d\mathbf{R}_m/dt$  [25] and, furthermore, the adhesion molecules binding with intracell cytoskeletons, which is well known [26]. This term results in the driving force of leader cell motions in the direction of  $p_m$  [27]. Note that the driving is exerted only through the contact with follower cells [21]. Here,  $\nu$  is the ratio of  $d\mathbf{p}_m/dt$  to  $d\mathbf{R}_m/dt$ .  $\mathbf{R}_m$  is quasistatically equal to the center of domain mass  $\sum_{\mathbf{r}} \mathbf{r} \delta_{mm(\mathbf{r})}/A_m$  with  $A_m = \sum_{\mathbf{r}} \delta_{mm(\mathbf{r})}$ .

The third term in the RHS of Eq. (1) is the bulk term,

$$\mathcal{H}_B = \kappa A \sum_m (1 - \frac{A_m}{A})^2, \tag{5}$$

which maintains areas of cells to A. Here  $\kappa$  is the bulk modulus and A is the reference area. These values are independent of m and therefore  $\tau(m)$ .

On the basis of  $\mathcal{H}$ , we simulate the cell dynamics by the following Monte Carlo simulation [20]: The time unit of this simulation is taken to be a single Monte Carlo step (MCs). In this unit,  $L^2$  single flips are attempted. The flip indicates the copy trial of a Potts state from a randomly chosen site  $\mathbf{r}$ to its randomly chosen nearest or next nearest sites. The flip is accepted with the Metropolis probability min $\{1, \exp[-\beta(\mathcal{H}_c - \mathcal{H})]\}$  with the Hamiltonian of the copied state,  $\mathcal{H}_c$ . After this procedure in MCs,  $\mathbf{p}_m$  is updated once by Eq. (4) and  $\mathbf{R}_m$  is set to the center of domain mass, respectively.

#### 3 Simulations

At the beginning of this section, we explain the system used in the simulation. We impose the periodic boundary condition for simplicity on the analysis of the cell motion. For avoiding a finite size effect of a boundary condition, we employ a sufficiently large system with L = 192. For the purpose of checking the effect of the leader cells, we compare two cases. The first system consists of 32 followers and 32 leaders and the second system consists of 56 followers and 8 leaders. For convenience, we call the former the dense leader case and call the latter, the sparse leader case. The latter case corresponds to the expected situation for the rotation in the introduction.

Next, we move onto the explanation of the model parameters. We consider the parameters  $\beta = 0.5$ ,  $\kappa = 10$ ,  $\tau = 10$  to realize the cell motion by the flexible deformations of cell shapes. For realizing the collective motion of cells, the aggregation of all the cells are necessary [1]. For this, we set the surface tensions between cells less than twice the cell-empty interface tensions. Concretely, we impose  $\gamma_C^2 = \gamma_H = 4.0$  and  $\gamma_E^1 = \gamma_E^2 = 6.0$ . For this, we set  $\gamma_C^1 = 9.0$  larger than  $2\gamma_H$ . We also assume the leader cells aggregate without follower cells, and therefore impose  $\gamma_C^1$  less than  $2\gamma_E^1$ . For the propulsion, we employ a sufficiently large value of  $\gamma_p$ , 1.0. By this choice, we can easily observe the motions of leader cells in cell aggregations and satisfy a necessary condition for the leader to drag the follower cell rotations.

In these settings, we simulate the collective motion of cells. Hereafter, we explain the simulation and the observations of the collective motion. From Eq. 4, the collective motion is expected to reflect in



Fig. 1: Snapshots of cell configurations for (a) the dense leader case and (b) the sparse leader case. Violet colored domains are leader cells. Yellow or orange colored domains are follower cells. Red arrows in leader domains represent the direction of adhesion polarity.

the configuration of leaders' polarities. Therefore, to confirm the type of collective cell motion, we sample cell polarities in the steady states. In this case, the initial state consists of an 8-by-8 array of cells. Each cell has the 8-sites  $\times$  8-sites square shape and they are separated from the neighboring cells by an interval. The leader cells are aligned at 4-by-8 for the dense leader case and 1-by-8 for the sparse leader cells. In this case, the leader cells are separated from the follower cells. To obtain the steady states from this initial state, we simulate the relaxation of the state during  $2 \times 10^4$  MCs. After the relaxation, we sample steady states. The steady states do not depend on the initial states. In fact, the leader and follower cells mix as shown in Fig. 1 and therefore relax their surface tension from the initially-separated states. Here, the panels (a) and (b) show the aggregated state of cells for the dense and sparse leader cases, respectively.

For the dense leader case, the leader configuration takes a checkerboard pattern of leader cells [28, 29]. This pattern reflects the suspension condition of leader cells in the aggregation: The surface tensions satisfy  $2\gamma_H < \gamma_C^1$  and inhibits the contacts between the leader cells. Owing to this pattern, the leader cells are relatively restricted to each other in their relative positions. This restriction effectively realizes a similar situation of a uniform system consisting of leaders and reflects in the unidirectional polarity order of leader cells. As a result, the cell aggregation behaves as a moving droplet with motility persistence.

In contrast to the dense leader case, the leader cells in the sparse leader case randomly disperse in the aggregation of cells. The random dispersion results from the absence of the positional restriction and thereby the disorder of the leader polarities. However, the polarities in the snapshot seemingly rather align in similar directions in contrast to the rotation in the contact following [6]. Therefore, if the collective rotation appears, the rotation may not steadily but statistically occur in a long time



Fig. 2: Trajectories of a leader cell and a follower cell for (a) the dense leader case and (b) the sparse leader case. Black line represents the trajectory of a leader cell. Red line represents the trajectory of a follower cell. The origin of trajectories is taken at the position of the follower after the relaxation.

even if it occurs. For the careful examination of the rotation, the cell rotation should be confirmed not indirectly by the snapshot but directly by the trajectories of cells.

To directly confirm the cell rotation from the cell trajectories, we calculate the trajectories of the leader and follower cells. For the comparison with the dense leader case with the polar order, we show the trajectories in Fig. 2(a) for the dense leader case and in Fig. 2(b) in the sparse leader case. For the dense leader case, the trajectories of the leader and follower cells are almost the same and therefore, suggest the collective cell motion in the same direction. In contrast to this, the rotational motion of the cells appears in the sparse leader case as previously expected. Thus, we confirm the collective cell rotations as a leader effect.

To speculate the driving mechanism of this rotation, we focus on the leader motion in this rotation. Leader cells mainly stay in the boundary of aggregation and move along it in our observation. In fact, reflecting this motion, the leaders take their rotation radius equal to the radius of the aggregations, which is  $(NA/\pi)^{1/2} \sim 4.5A^{1/2}$  as shown in Fig. 2(b). From this observation, we can speculate that the leaders drive the boundary of the aggregation in the rotation direction by dragging follower cells because the leader cells cannot move in the normal direction of the boundary.

## 4 Summary and Remarks

In conclusion, we confirm the collective cell rotation guided by leader cells. From our simulation, the number of leader cells is necessary to be small for stabilizing the rotation. This is because the dense leader cells stabilize the polar order and thereby inhibit the rotation [19].

This collective cell rotation has two prominent properties. One prominent property is the persistence of the collective cell rotation. Namely, the direction of the rotation does not change in a long time. The mechanism of this persistence may originate from the persistence of leaders' polarities. However, as shown in Fig. 1(b), the direction of leaders' polarities are not always aligned in the same direction consistent with the rotation. Namely, the persistence of polarities apparently does not contribute to the persistence of the rotation. Therefore, another origin of the persistence of rotation is expected. One possibility of this alignment is the long-range coupling of leaders' polarities through the motion of follower cells as shown by Kabla for the collective migration [19]. This coupling may statistically stabilize a slight net polarity consistent with the rotation.

The other prominent property is the fact that the velocities of leader cells are two times faster than those of follower cells as shown in the number of trajectory circles in Fig. 2(b). This property may be useful as a sufficient marker of the leader-guiding. Namely, the leader mechanism can be explored by the experimental observation of the cell trajectories in the collective cell rotation in the future. When our setting is realized, the distribution of cell velocity or displacement is predicted to become bimodal because of the difference between the leader and follower cells in their velocities. Such a bimodal distribution has never been reported in experiments of *Dictyostelium discoidem* at least. Therefore, this absence of the report at least in *Dictyostelium discoidem* implies another still-uncovered solution where the leader and follower have the same velocity.

For the universality of these properties on the propulsion, we additionally give a remark. In the present work, we assume the heterophilic cell-cell adhesion as a propulsion source of leader cells. We expect that these properties do not depend on the origin of the motility and depend only on the persistence of motility's polarity. This is necessary for rotations of leaders to avoid simple random walks. If the polarity has persistence, this leader mechanism is applicable to the cases of propulsion by either chemotaxis or molecular chirality.

# 5 Acknowledgement

We thank the support on the research resource by M. Kikuchi and H. Yoshino. This work is supported by JSPS KAKENHI (Grant Number 19K03770, 18K13516, 17H06386) and by AMED (Grant Number JP19gm1210007).

# References

- P. Friedl and D. Gilmour, Nature Rev. Mol. Cell Bio. 10, 445 (2009)
- [2] G. E. Holloway et al., Dev. Cell 12, 207 (2007).
- [3] J. T. Bonner, The Social Amoebae: The Biology of Cellular Slime Molds (Princeton University Press, 2008).
- [4] Here, the word "spontaneous" means the exclusion of the rotations due to the artificial confinement.
- [5] A. Nicol *et al.*, J. Cell Sci. **112**, 3923 (1999).
- [6] W.-J. Rappel et al., Phys. Rev. Lett. 83, 1247 (1999).
- [7] T. Umeda and K. Inouye, J. theor. Biol. 219, 301 (2002).
- [8] A. Tamada and M. Igarashi, Nat. Comm. 8, 2194 (2017).
- [9] H. Takagi, M. J. Sato, T. Yanagida, and M. Ueda: PLOS One3(2008)e2648.
- [10] L. Li, E. C. Cox, and H. Flyvbjerg: Phys. Biol.8(2011) 046006.
- [11] C. A. Weber et al., Phys. Rev. Lett.110(2013) 208001.
- [12] T. Hanke, C. A. Weber, and E. Frey, Phys. Rev. E 88, 052309 (2013).
- [13] T. Hiraoka, T. Shimada, and N. Ito, Phys. Rev. E 94, 062612 (2016).
- [14] K. Matsushita, K. Horibe, N. Kamamoto, K. Fujimoto, J. Phys. Soc. Jpn. 88, 103801 (2019).
- [15] K. Matsushita, K. Horibe, N. Kamamoto, S. Yabunaka, and K. Fujimoto, Proc. Sympo. Simul. Traffic Flow 25, 21 (2019).
- [16] M. Akiyama *et al.*, Develop. Growth Differ. 59, 471 (2017).
- [17] M. Hayakawa et al. eLife 9, e53609 (2020).
- [18] T. Vicsek *et al*, Phys. Rev. Lett. **75**, 1226 (1995).
- [19] A. J. Kabla, J. R. Soc. Interface 9, 3268 (2012).
- [20] F. Graner and J. A. Glazier, Phys. Rev. Lett. 69, 2013 (1992).
- [21] K. Matsuashita, Phys. Rev. E 101, 052410 (2020).
- [22] J. C. Coates & A. J. Wood. J. Cell Sci. 114, 4349 (2001).
- [23] H. Sesaki & C. H. Siu, Dev. Biol. 177, 504 (1996).
- [24] K. Matsushita, Phys. Rev. E 95, 032415 (2017).
- [25] B. Szabó, G. J. Szollosi, B. Gonci, Z. Juranyi, D. Selmeczi, and T. Vicsek: Phys. Rev. E, 74 061908 (2006).
- [26] J Hülsken, W Birchmeier, J Behrens, J. Cell Biol. **127**, 2061 (1994).
- [27] K. Matsushita, Phys. Rev. E 97, 042413 (2018).
- [28] H. Honda, H. Yamanaka, and G. Eguchi, J. Embryol. Exp. Morph. 98, 1 (1986).
- [29] J. A. Glazier and F. Graner, Phys. Rev. E 47, 2128 (1993).

E-mail: kmatsu@bio.sci.osaka-u.ac.jp

# 1次元交通流におけるエントロピーの定式化と相互情報量を 利用したメタ安定状態の検知

三浦紋子1, 友枝明保2, 西成活裕3

1 データストラテジー株式会社

2 武蔵野大学 工学部 数理工学科 3 東京大学 先端科学技術研究センター

#### 概要

エントロピーはニュートン粒子の状態をマクロ・ミクロ両面から表現できる状態量である。しか し、ニュートンの法則を満たさない自己駆動粒子について、エントロピーを定義した研究は少な い。本研究では、1次元交通流のエントロピーとその一部である相互情報量を情報理論の観点か ら再定義した。新しく定義されたエントロピーの実用性を示すため、高速道路を追従走行する3 台の車両の GPS データを用いて、エントロピーの数値計算を行い、相互情報量がメタ安定状態 の予想に利用できることを示した。

Formularization of entropy and detection of metastable states using mutual information in one-dimensional traffic flow

Ayako Miura<sup>1</sup>, Akiyasu Tomoeda<sup>2</sup>, Katsuhiro Nishinari<sup>3</sup>

<sup>1</sup> Data Strategy Inc.

<sup>2</sup> Department of Mathematical Engineering, Faculty of Engineering, Musashino University <sup>3</sup> Research Center for Advanced Science and Technology, The University of Tokyo

#### Abstract

Entropy is a useful property that can express both macro and micro states of Newtonian particles. However, in previous research studies, researchers did not fully determine how entropy can be defined for self-driven particles that do not satisfy Newton's laws. In this study, we redefine the entropy and mutual information in one-dimensional traffic flow from the information theoretical perspective. Moreover, we used the mutual information to detect a metastable state by calculating GPS data from three following vehicles on a real expressway to demonstrate the practical application of the formularized mutual information.

# 1 Introduction

Entropy is defined both from a macro perspective, such as thermodynamics and fluid dynamics, and a micro perspective, such as statistical mechanics and information theory. Therefore, entropy is a useful property that can express both the macro and micro states of Newtonian particles. However, the self-driven particles do not satisfy Newton's first and third laws of motion. In contrast to the usefulness of entropy to define both the macro and micro states of Newtonian particles, researchers are yet to fully determine how entropy can be defined for the non-Newtonian selfdriven particles. For instance, Kerner & Konhauser [1] and Reiss et al. [2] performed thermodynamic studies of vehicles that are typical examples of self-



Fig.1: The schematic diagram of the relation between X,  $P(X = X_i)$ ,  $D_i$ , L, and vehicles

driven particles [3]. Kerner & Konhauser defined the traffic temperature and pressure in terms of the correspondence between their hydrodynamic models and the Navier–Stokes equation. In addition, Reiss et al. [2] performed further study on one-dimensional traffic flow using thermodynamics to define traffic temperature and pressure. They mentioned entropy but considered that it was not an appropriate property to represent the uncertainty in traffic flows. Therefore, explaining the entropy of vehicular traffic, which is described both by macro- and micro-scale models [3], is a notable challenge.

In this study, we begin with Iwasaki and Sadakata's definition of entropy [4].

$$S(X) = -\sum_{i=1}^{n} P(X = X_i) \log_2 P(X = X_i), \quad (1)$$

where n is the number of vehicles, X is a discrete random variable,  $X_i$  is the *i*-th possible value of X, and  $P(X = X_i)$  is a probability distribution function. Note that  $X_i$  corresponds to the situation when the headway of the i-th vehicle becomes  $D_i$  and  $P(X = X_i) = \frac{D_i}{L}$ , where L is the length of the road. The schematic of the relation between  $X, P(X = X_i), D_i, L$ , and vehicles is shown in Fig. 1. The definition in Eq. (1) is analogous to the formula of entropy commonly used in information theory with the assumption that the headway between the vehicles is a mutually isolated, independent event. Entropy formularized as S(X) represents the variation in the locations of the vehicles. S(X) is maximum when the headway consists of equally spaced intervals and the vehicles are widely scattered on the road, while S(X) is minimum when all the vehicles form a single cluster with the minimum intervals. However, they did not examine the velocity variation of vehicles in traffic flow. In this study, we advance the previous research, which focused on traffic flow from information theory, by defining the new entropy in traffic flow.

# 2 A New Formulation of Entropy in 1D Traffic Flow

We discretize a random variable Y for the velocity, and we assume the possible values of Y into three values  $Y_1$ ,  $Y_2$ , and  $Y_3$  corresponding to situations when the velocity is 0, between 0 and maximum, and maximum, respectively. Although it is possible to discretize Y in further detail because measured data show that the velocity changes continuously, we categorized Y into three values for the sake of simplicity.

For a fixed length of the road, the joint distribution  $P(X = X_i, Y = Y_j)$  can be formularized between the random variables X and Y as listed in Tables 1 and 2.  $(X_i, Y_1)$  occurred when the headway of *i*-th vehicle was  $D_i$  and the velocity of vehicle i was 0. This situation reflected that the headway of the vehicle was  $D_v + D_s$  in terms of the length of the vehicle  $D_v$  and the inter-vehicle gap  $D_s$  as the vehicle came to rest.  $(X_i, Y_2)$  occurred when the headway of *i*-th vehicle was  $D_i$  and the velocity of vehicle i was between 0 and maximum. It indicated that the headway was longer than  $D_v + D_s$  but shorter than  $D_v + D_s + D_a$ , where  $D_a$  represents the threshold value of the inter-vehicle gap to distinguish the maximum velocity from any lower velocity.  $(X_i, Y_3)$  occurred when the headway of the *i*-th vehicle was  $D_i$  and the velocity of vehicle i was at maximum; this signified that the headway was longer than or equal to  $D_v + D_s + D_a$ . A schematic of the relation between  $Y_j$ ,  $P(X_i, Y_j)$ ,  $D_v$ ,  $D_s$ ,  $D_a$ ,  $D_i$ , L, and vehicles is shown in Fig. 2.

 $P(X_i, Y_j)$  can be classified based on the magnitude correlation between  $D_i$  and  $D_v + D_s + D_a$ , and these are listed in Tables 1 and 2. Furthermore, when  $D_v < D_i \le D_v + D_s$ ,  $P(X_i, Y_j)$  is the



Fig.2: A schematic diagram of the relation between  $Y_j$ ,  $P(X_i, Y_j)$ ,  $D_v$ ,  $D_s$ ,  $D_a$ ,  $D_i$ , L, and vehicles.

marginal distribution of  $X_i$ . This formulation is dependent on the assumption that vehicles have a relation between the headway and velocity.

Subsequently, we can formularize entropy in a system of n vehicles. The entropy S(X) representing the location variation is given by Eq. (1), and the entropy S(Y) is defined by

$$S(Y) = -\sum_{j=1}^{3} P(Y = Y_j) \log_2 P(Y = Y_j), \quad (2)$$

where Y denotes the discrete random variable,  $Y_j$ is the *j*-th possible value of Y, and  $P(Y = Y_j)$  is a probability distribution function, as defined in Tables 1 and 2. S(Y) represents the velocity variation of all the vehicles. We assume that the velocities of the individual vehicles are mutually isolated because each vehicle is a self-driven particle. The entropy S(X, Y) considering the location and velocity variations is defined as

$$S(X,Y) = -\sum_{i=1}^{n} \sum_{j=1}^{3} P(X = X_i, Y = Y_j) \log_2 P(X = X_i, Y = Y_j)$$

where  $P(X = X_i, Y = Y_j)$  is a joint distribution function, as defined in Tables 1 and 2. In accordance with the formalism of information theory,  $\frac{0}{L} \log_2 \frac{0}{L} = 0$ . S(X), S(Y), and S(X, Y) were calculated when the length of the road L was constant. The three types of entropy described above can be used to derive the mutual information I(X;Y);

$$I(X;Y) = S(X) + S(Y) - S(X,Y).$$
 (3)

# 3 Detection of Metastable States Using I(X; Y)

We use the GPS data obtained when three vehicles were platooning on a real expressway in order



Fig.3: Time evolution of the average velocity values for three vehicles and average headway values between the three vehicles.

to verify the characteristics of mutual information. The velocity and headway are calculated from the GPS data. Their average values for the three vehicles are shown in Fig. 3. After 200 s, there is a period during which the average velocity increased; although the average headway values were high in the early half of this period (200 to 400 s), they were small in the latter half (400 to 600 s).

We obtained the real data of the following three vehicles in open system. To calculate each entropy defined for a system with periodic boundaries, we assume that the front vehicle varied the speed and the succeeding two vehicles increased or reduced their speed owing to the front vehicle in the circuit L = 300 [m]. The circuit length L is set such that it does not exceed the sum of the headways of the succeeding two vehicles. I(X; Y), as shown in Fig. 4, increases when the average velocity is low and headway values are small in congested flow but decreases when the congestion starts to clear. I(X;Y) obtains different values at 200 to 400 s and 400 to 600 s because I(X;Y) varies between a state of high velocity and long headway and in a state of high velocity but short headway. In other words, the mutual information I(X; Y) enables the

| $P(X_i, Y_j)$ | $X_1$                         | <br>$X_i$                         | <br>$X_n$                         | $P(Y_j)$                                     |
|---------------|-------------------------------|-----------------------------------|-----------------------------------|----------------------------------------------|
| $Y_1$         | $\frac{D_v + D_s}{L}$         | <br>$\frac{D_v + D_s}{L}$         | <br>$\frac{D_v + D_s}{L}$         | $\frac{n(D_v + D_s)}{L}$                     |
| $Y_2$         | $\frac{D_1 - (D_v + D_s)}{L}$ | <br>$\frac{D_i - (D_v + D_s)}{L}$ | <br>$\frac{D_n - (D_v + D_s)}{L}$ | $\sum_{i=1}^{n} \frac{D_i - (D_v + D_s)}{L}$ |
| $Y_3$         | 0                             | <br>0                             | <br>0                             | 0                                            |
| $P(X_i)$      | $\frac{D_1}{L}$               | <br>$\frac{D_i}{L}$               | <br>$\frac{D_n}{L}$               | 1                                            |

Table 1:  $P(X_i, Y_j)$  when  $D_v + D_s < D_i < D_v + D_s + D_a$ .

Table 2:  $P(X_i, Y_j)$  when  $D_i \ge D_v + D_s + D_a$ .

| $P(X_i, Y_j)$ | $X_1$                               | <br>$X_i$                               | <br>$X_n$                               | $P(Y_j)$                                           |
|---------------|-------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------|
| $Y_1$         | $\frac{D_v + D_s}{L}$               | <br>$\frac{D_v + D_s}{L}$               | <br>$\frac{D_v + D_s}{L}$               | $\frac{n(D_v + D_s)}{L}$                           |
| $Y_2$         | $\frac{D_a}{L}$                     | <br>$\frac{D_a}{L}$                     | <br>$\frac{D_a}{L}$                     | $\frac{nD_a}{L}$                                   |
| $Y_3$         | $\frac{D_1 - (D_v + D_s + D_a)}{L}$ | <br>$\frac{D_i - (D_v + D_s + D_a)}{L}$ | <br>$\frac{D_n - (D_v + D_s + D_a)}{L}$ | $\sum_{i=1}^{n} \frac{D_i - (D_v + D_s + D_a)}{L}$ |
| $P(X_i)$      | $\frac{D_1}{L}$                     | <br>$\frac{D_i}{L}$                     | <br>$\frac{D_n}{L}$                     | 1                                                  |



Fig.4: Time evolution of I(X; Y) of three vehicles (calculated with  $D_v = 5$  [m],  $D_s = 3$  [m],  $D_a = 10$  [m]).

detection of a metastable state of high velocity but short headway. The advantages of using I(X;Y) for metastable state detection is that using one parameter for the detection is easier than two parameters, considering the computation of autonomous vehicles.

# 4 Conclusion

We modified the formularization of entropy in one-dimensional traffic flow from a micro viewpoint. This was proposed in previous research [4] that formularized entropy focusing on headway between vehicles. We redefined entropy focusing on the velocity variation of vehicles to formularize entropy and mutual information. Moreover, when we calculated I(X;Y) using experimental data obtained from three vehicles on a real expressway, we found that although the average velocity of the three vehicles was high, I(X;Y) varied with the average headway between the three vehicles. The detection of a metastable state is an application of I(X;Y) in this study, but it also has a practical application for traffic management as the detection of these metastable states can be a sign of imminent congestion. For further details of this study, please refer to our published article https://doi.org/10.1016/j.physa.2020.125152.

# References

- B. S. Kerner and P. Konhauser, Phys. Rev. E 48, R2335(R) (1993).
- [2] H. Reiss, A. D. Hammerrich, and E. W. Montroll, J. Stat. Phys. 42, 3, p.647 (1986).
- [3] D. Chowdhury, L.Santen, and A. Schadschneider, Phys. Reports **329**, p.199 (2000).
- [4] Y. Iwasaki and M. Sadakata, in *Proceedings* of *IFORS International Conference on Opera*tional Research, Athens, 1990, (Elsevier, New York, 1990), p.379.

# 3種類の速度帯に属する歩行者の 2レーン上におけるシミュレーション

青木隆広<sup>1</sup>,藤田旭洋<sup>1</sup>,柳澤大地<sup>2,1</sup>,西成活裕<sup>2,1</sup>

<sup>1</sup>東京大学大学院 工学系研究科 航空宇宙工学専攻 <sup>2</sup>東京大学 先端科学技術研究センター

#### 概要

近年、歩行者の多様性に着目した研究が行われている。本研究でも多様な歩行者の混合流につい てより知見を得ることを目的とし、特に3種類の速度帯に分類される歩行者達が2レーン上を同 時に歩行する状況についてシミュレーションを行った。その結果低密度な状況では、遅い歩行者 達は共通の1つのレーンのみを使用する方が流量は大きくなることが示唆された。この結果は昨 今の感染症の拡大を踏まえた、低密度における歩行者流のマネジメントにも寄与すると思われる。 また特に最大流量を示す平均密度付近では、速い歩行者はレーン変更による追い越しをせず、遅 い歩行者達とは別のレーンを使用する方が流量が大きくなることが示唆された。この知見は将来 的に、施設等における動的な歩行者誘導に寄与すると思われる。

# Simulation on Pedestrian Flow Composed of Three Types of Agents Walking at Different Speeds on Two Lanes

Takahiro Aoki<sup>1</sup>, Akihiro Fujita<sup>1</sup>, Daichi Yanagisawa<sup>2,1</sup>, Katsuhiro Nishinari<sup>2,1</sup>

<sup>1</sup> Department of Aeronautics and Astronautics, School of Engineering, The University of Tokyo.
<sup>2</sup> Research Center for Advanced Science and Technology, The University of Tokyo.

#### Abstract

Recently, heterogeneous pedestrian flow has been studied vigorously. This paper is also aimed to get deeper understanding on heterogeneous pedestrian flow with simulations, especially the flow composed of agents, who are divided into three groups by their walking speed, on two lanes. Our simulations suggest that slow walkers should use only one lane under the condition of low density to increase flow. This result could contribute to managing pedestrian flow of low density in light of the recent pandemic. Besides, when the density increases, fast walkers should also keep walking the other lane without lane-changing or overtaking to increase flow. This knowledge could be applied to dynamic pedestrian guidance in facilities.

# 1 導入

近年、歩行者流における歩行者の多様性に着目した研究が行われている。Al-Azzawiと Raeside[1] は

観察データから、環境や年齢など様々な要因によっ て歩行者の速度が 0.5 [m/s] 程度から 2.0 [m/s] 程度 まで多岐にわたることを示した。一方 Cao ら [2] は 歩行速度の異なる被験者グループが混ざり、1 列に なって歩く様子を分析した。同様に藤田ら [3] は被 験者を歩行速度によって2グループに分け、速いグ ループには追い越しを許可するという条件で、2グ ループが混ざって歩く様子を分析した。またシミュ レーションにおいて、Fuら [4] は、歩行者の追い越し の行動をフロアフィールドモデルを用いて分析した。 Yuenら [5] は現実世界の歩行者の追い越しを模する ように既存の Social Force モデルを改善し、実験結 果とのおおよその一致が確認された。実際の大規模 イベントなどでは多様な歩行者が限られたスペース を歩行し、その中には歩行が困難な人や急いでいる 人などが含まれていることが想定される。そこで本 研究では歩行者を模したエージェントをその速度に より3種類に分類し、それらの2レーン上での混合 流についてシミュレーションを行った。

# 2 シミュレーションモデル

シミュレーションは2レーンからなる周期系で行っ た(図 1)。各レーンの空間は連続、時間は離散的で あり、全てのシミュレーションにおいてレーン一周 の長さ L = 15 [m] とする。本節で説明する各エー ジェントはこれらのレーン上を移動するが、位置の 更新は  $\Delta t = 1$  [step] = 0.5 [s] 毎に全エージェント 同時に行われる。



| 第1レーン | _ | _ | _ |   | _ | _ | _ | _ | _ |  |
|-------|---|---|---|---|---|---|---|---|---|--|
| 第2レーン | - | - | - | - | - | - | - | - | - |  |

図 1: 2 レーンから成る周期系

#### 2.1 歩行速度

全てのエージェントは "Fast"、"Normal"、"Slow" の3種類のグループに人数比1:1:1で割り振られ る。これらは例えば、急いでいる人、若者、年配の人 などにそれぞれ対応している。以後、iはi番目のエー ジェントの値、tは時刻t [step] における値であるこ とを表す。各エージェントには最高速度 $v_{\max}(i)$ が個 別に割り当てられている。U(a,b)を最小値a、最大 値bの一様分布として、Fast グループのエージェント は $v_{\max}(i) \stackrel{iid}{\sim} U(2.0, 2.2)$  [m/s]、Normal グループの エージェントは  $v_{\max}(i) \stackrel{iid}{\sim} U(1.4, 1.6)$  [m/s]、Slow グループのエージェントは  $v_{\max}(i) \stackrel{iid}{\sim} U(0.8, 1.0)$ [m/s] で最高速度が割り振られる。

次に、仮想速度  $v_{in}(i,t)$  という概念を導入する。  $v_{in}(i,t)$  はエージェントが意図する歩行速度であり、  $v_{in}(i,t) = min[v_{max}(i), (h(i,t) - s)/\Delta t]$  で与えら れる。h(i,t) は前方のエージェントまでの距離、 はパーソナルスペースも含めた各エージェントの共 通サイズを表す。本シミュレーションでは一貫して s = 0.5 [m] である。 $v_{in}(i,t)$  の表式はすなわち、全 てのエージェントは  $v_{max}(i)\Delta t$  以下の範囲で進める だけ進もうとすることを示している。このルールに より仮想速度が  $v_{max}(i)$  に達するまでは h(i,t) に対 して線形に増加することになる。これは Cao ら [2] の実験結果を参考にしている。

最後に仮想速度に擾乱を加えることで、実速度 v(i,t)を考える。v(i,t)はエージェントの実際の歩 行速度であり、v(i,t) =  $(1 - \epsilon(i,t))v_{in}(i,t)$ で与えら れる。 $\epsilon(i,t)$ は仮想速度と実速度の差の割合を表し ており、 $\epsilon(i,t)^{iid}$ U(0,0.2)で表される。以上のよう に実速度を決定すると、他の歩行者などに邪魔され ない状況では各グループのv(i,t)の最小値および最 大値は、Fast グループは 1.6,2.2 [m/s]、Normal グ ループは 1.12, 1.6 [m/s]、Slow グループは 0.64, 1.0 [m/s]を示すことになる。



図 2: レーン変更の流れ

## 2.2 レーン変更

いくつかのシミュレーションでは毎時刻、全エー ジェントの直進方向(図1「歩行の方向」)の更新が 完了した後にレーン変更を行った。ここでは Rickert



ら[6]の交通流のモデルに変更を加え、以下の2つの 条件が同時に満たされたエージェントは隣のレーン に移動できるとした。1つ目は自分より遅いグルー プに属するエージェントによって、歩行が邪魔され た  $(v_{in}(i,t) < v_{max}(i))$  と感じられる時である。 2 つ目は自分の真横に自身が収まるスペース s が空い ている時である。すなわち、レーン変更が許可され ているシミュレーションでは、上の二つの条件が同時 に満たされれば Fast または Normal グループのエー ジェントはレーン変更が可能になる。図2にこれら の流れを図示した。なお、本ルールでは同一エージェ ントがレーン変更を毎時刻繰り返すことがある。本 研究では両レーンを合わせた流量に注目するため特 段の対応は行わないが、レーン変更回数などに注目 する際には別途レーン変更回数をコントロールする 対応が必要になると考えられる。

#### 2.3 遵守率

最後に遵守率という考え方を導入する。まず状況 設定として、「ゆっくり歩く人は左側(第1レーン) 通行」というルールを設けることを考える。これに より Slow グループのエージェントは第1レーンを 歩くようになるが、全員が従うとは限らない。そこ で、Slow グループのエージェントがルールに従う確 率を遵守率  $R_c$  と定義し、確率  $R_c$  で第1レーンに、 確率  $1 - R_c$  で第2レーンに初期配置する。Slow グ ループのエージェントはレーン変更を行わないため、 初期配置されたレーンを歩き続けることになる。シ ミュレーションでは  $R_c = 0.5, 0.75, 1.0$  の3通りの 値を試した。なお、両レーンの密度のバランスを考 慮して、Fast グループのエージェントは確率  $1 - R_c$ で、Normal グループのエージェントは確率 0.5 で第 1レーンに初期配置されることとした。 前述のレーン変更を許可するか禁止するかの2種 類、遵守率 $R_c = 0.5, 0.75, 1.0 \text{ o}$  3種類の組み合わせ で、計6種類のシミュレーションを行った。また、各シ ミュレーションは、エージェントを3人から60人まで 3人刻みで変化させ、各人数において140 [step]=70 [s] の長さで100 回ずつ行った。

なお各シミュレーションにおいて、h(i,t)は何ら かの分布を持っていると考えられるが、初期配置で はそれを無視しているため、初期配置の影響を取り 除く必要がある。レーン変更を許可する条件では最 初の 20 [step]= 10 [s] を、禁止する条件では最初の 50 [step]= 25 [s] を取り除いて分析を行った。これ により、取り除いた後の最初の流量に対して、後の 流量変化は平均的に $\pm 5\%$ 以内に収まっている。

# 3 結果と考察

まず、遵守率による流量の推移を見てみる。ここ では流量として、両レーン上の平均密度と、全エー ジェントの平均速度の積に対して時間平均をとった ものを用いている。レーン変更が許可されている場 合(図3左)、最大流量に達しない程度の低密度な状 況では、遵守率が高い順に流量も高い値を示した。 これは、Slow グループのエージェントが第1レーン に集まることにより、他グループのエージェントが 第2レーンで歩行を妨げられる頻度が減ることが理 由だと考えられる。

またレーン変更が禁止されている場合(図3右) では広い平均密度の範囲で、遵守率の高い順に流量 も大きい値を示している。これは、レーン変更が禁 止されている状況では、目の前のエージェントの歩 行速度が自身と比較して著しく遅いと、歩行が妨げ られてしまうことから理解できる[7]。

次に R<sub>c</sub>の値ごとに、レーン変更を許可する場合



および禁止する場合の基本図を比較する(図 4)。  $R_c = 0.5$ および 0.75の時には、レーン変更を許可 する場合の方が流量が大きい傾向が見て取れる。レー ン変更やエージェントの加減速ルールは異なるもの の、Rickert ら [6]の車を模したモデルでも同様の結 果が得られており、彼らのモデルは本モデルにおけ る $R_c = 0.5$ に相当する。一方で $R_c = 1.0$ において、 渋滞がまだ起きていない低密度な状況では、レーン 変更が許可されている方が流量が大きいが、渋滞が 起きる前後の平均密度においてはレーン変更が禁止 されている方が流量が大きいとわかる。

同一 $R_c$ 毎の基本図の傾向として、レーン変更が 許可されている場合の最大流量を示す平均密度( $\bar{p} = 1.1$  [/m])は、レーン変更が禁止されている場合の それ( $\bar{p} = 1.0$  [/m])より高い値を示しているが、こ れはレーン変更によって、多少高密度な状況でも歩 行が円滑に行えるからであると考えられる。また渋 滞が起きた後の高密度な状況では、レーン変更が許 可されているか否かに依る流量の差は見受けられな い。つまりレーン変更が許可されていても、実際に はほとんど行うことができないのだと考えられる。

# 4 結論

本シミュレーションにより得られた結論をまとめ る。歩行速度が広い範囲にわたる歩行者流が2レー ン上を流れる際、低密度な状況では遅い歩行者は一 方のレーンにまとまった方が流量が増加するという ことがわかった。また特に最大流量を示す平均密度 付近では、歩行速度の遅速によってレーンを分け、 レーン変更を禁止したほうが流量が増加するという ことがわかった。しかしその際、レーン分けの遵守 率が低い(50~75%)場合にはレーン変更を許可し たほうが流量が増加する可能性が示唆された。

# 5 謝辞

本研究は、JST 未来社会創造事業 JP-MJMI20D1 及び FONDAZIONE CARIPLO (Italy), "LONGEVICITY - Social Inclusion for the Elderly through Walkability", Rif. 2017-0938 の支援を受けたものである。

# 参考文献

- Marwan Al-Azzawi and Robert Raeside. Journal of Urban Planning and Development, Vol. 133, No. 3, pp. 211–219, 2007.
- [2] Shuchao Cao, Jun Zhang, Daniel Salden, Jian Ma, Ruifang Zhang, et al. *Physical Review E*, Vol. 94, No. 1, p. 012312, 2016.
- [3] Akihiro Fujita, Claudio Feliciani, Daichi Yanagisawa, and Katsuhiro Nishinari. *Physi*cal Review E, Vol. 99, No. 6, p. 062307, 2019.
- [4] Zhijian Fu, Liang Xia, Hongtai Yang, Xiaobo Liu, Jian Ma, Lin Luo, Lizhong Yang, and Junmin Chen. *International Journal of Modern Physics C*, Vol. 28, No. 05, p. 1750059, 2017.
- [5] JKK Yuen and EWM Lee. Safety Science, Vol. 50, No. 8, pp. 1704–1714, 2012.
- [6] Marcus Rickert, Kai Nagel, Michael Schreckenberg, and Andreas Latour. *Physica A: Statistical Mechanics and its Applications*, Vol. 231, No. 4, pp. 534–550, 1996.
- [7] Takashi Nagatani. *Physical Review E*, Vol. 51, No. 2, p. 922, 1995.

# ASEPに対応する可積分系の数理構造

石黒裕樹<sup>1</sup>, 佐藤純<sup>2</sup>, 西成活裕<sup>3</sup>

<sup>1</sup>東京大学大学院 工学系研究科 航空宇宙工学専攻
 <sup>2</sup>お茶の水大学 ソフトマター教育研究センター
 <sup>3</sup>東京大学 先端科学技術研究センター

#### 概要

非対称単純排他過程 (ASEP) は,非平衡輸送現象を記述する 1 次元確率過程模型であり,可解 性といった豊かな数理構造をもつ. ASEP は別の可積分系との対応関係が知られている.可積 分な偏微分方程式である Burgers 方程式を ASEP から導出する事ができる.また,可積分場 の理論である微分型非線形シュレディンガー方程式 (DNLS) との対応も示唆されている.本研 究では,これらの可積分系間の対応関係を調べ,DNLS から Burgers 方程式が導出される事を 示した.

# Relationship among integrable systems related to the asymmetric simple exclusion process

Yuki Ishiguro<sup>1</sup>, Jun Sato<sup>2</sup>, Katsuhiro Nishinari<sup>3</sup>

<sup>1</sup> Department of Aeronautics and Astronautics, School of Engineering, The University of Tokyo.

 $^2$  Research and Education Center for Soft matter, Ochanomizu University.

 $^3$  Research Center for Advanced Science and Technology, The University of Tokyo.

#### Abstract

The asymmetric simple exclusion process (ASEP) is a one-dimensional stochastic model, which describes nonequilibrium transport phenomena and has rich mathmatical properties, such as solvability. The ASEP is related to two integrable systems: the Burgers equation, which is a classical integrable equation, and the derivative nonlinear Schrödinger equation (DNLS), which is also an integrable field equation. In this paper, we investigate these relations and present a derivation of the Burgers equation from the DNLS.

# 1 はじめに

非対称単純排他過程(Asymmetric simple exclusion process: ASEP)は、排除体積効果をもつ粒子が、⊠ 1次元格子上を左右非対称なレートで拡散していく確率過程模型である [1]. ASEP は単純な模型でありな がら、様々な物理現象をよく再現し、同時に豊かな数理構造を持つため、非平衡輸送現象を記述する基本 的な数理モデルとして盛んに研究されている. ASEP では、境界における粒子の流出入レートに対して、 流れの相転移(自由相/渋滞相/最大流量相)が起こる. この相転移が、高速道路の渋滞をよく再現するこ となどから、交通流を記述する数理モデルとして活用されている [2]. 他にも、生体内の輸送現象や界面成 長のダイナミクス等、多様な物理現象へ応用されている. ASEP は、多彩な非平衡現象を再現することに 加えて,可解であるという著しい性質を持つ.行列積の方法やベーテ仮設法によって,定常状態やダイナ ミクスの厳密な解析が可能である事が知られている [3, 4].

本研究では、ASEP と関連する可積分系の対応関係を考察する. ASEP から可積分な偏微分方程式で ある Burgers 方程式が導出される事が知られている [5]. 一方で、可積分場の理論である微分型非線形 Schrödinger 方程式 (Derivative nonlinear Schrödinger equation: DNLS) との対応も示唆されている [6]. しかし、DNLS と Burgers 方程式との対応関係は未解明であった.本論文では、Burgers 方程式が DNLS から直接導出可能であることを示す [7]. また、DNLS を経由した導出法では、自然に ASEP の有限粒子 補正項を含む事も併せて紹介する.

#### 2 ASEP

ASEP は、粒子が左右非対称なレートでホッピングする、1次元格子模型である。ASEP の模式図を図 1に示す。各粒子は微小時間 dt 間に、右(左)へ確率 pdt(qdt) で移動する。また、各粒子は排除体積効果を 持ち、ホッピング先に既に粒子がいる場合には、ホッピングは起こらない。以下では、周期的境界条件を考 え、サイト数は L とする。 j 番目のサイトの状態  $|n_j\rangle$  は、粒子がいない(いる)場合を  $|0\rangle(|1\rangle)$  として、2 次元ベクトルで表される。ある時刻 t における系の状態ベクトルは、正規直交基底を  $|n\rangle = |n_1, n_2, \cdots, n_L\rangle$ として、

$$|\psi(t)\rangle = \sum_{n} \psi(n,t)|n\rangle \tag{1}$$

と書ける. ここで  $\psi(n,t)$  は,時刻 t に粒子配置が  $n = (n_1, n_2, \cdots, n_L)$  となる確率を表す. ASEP の時間 発展は,以下のマスター方程式(虚時間形式の Schrödinger 方程式)

$$\frac{d}{dt}|\psi(t)\rangle = -\hat{\mathcal{H}}_{ASEP}|\psi(t)\rangle \tag{2}$$

によって記述される. ハミルトニアン  $\hat{\mathcal{H}}_{ASEP}$  は,

$$\hat{\mathcal{H}}_{\text{ASEP}} = \sum_{j=1}^{L} \left[ -p\hat{s}_j^+ \hat{s}_{j+1}^- - q\hat{s}_j^- \hat{s}_{j+1}^+ + p\hat{n}_j(1-\hat{n}_{j+1}) + q(1-\hat{n}_j)\hat{n}_{j+1} \right]$$
(3)

と表される.ただし,昇降演算子  $\hat{s}_{j}^{\pm}$ ,及び数演算子  $\hat{n}_{j}$  は,パウリ行列  $\hat{\sigma}_{j}^{x,y,z}$ を用いて  $\hat{s}_{j}^{\pm} = \frac{1}{2}(\hat{\sigma}_{j}^{x} \pm i\hat{\sigma}_{j}^{y})$ ,  $\hat{n}_{j} = \frac{1}{2}(1 - \hat{\sigma}_{j}^{z})$ と定義される演算子である.射影状態  $\langle s \rangle = \langle 0 | \exp\left(\sum_{j=1}^{L} \hat{s}_{j}^{+}\right) = \sum_{n} \langle n |$ を導入すると, 任意の物理量  $\hat{A}$ の期待値は  $\langle \hat{A} \rangle = \langle s | \hat{A} | \psi(t) \rangle$ と書ける.以上のことから,粒子密度の時間発展方程式

$$\frac{d}{dt}\langle \hat{n}_i \rangle = p \langle \hat{n}_{i-1} \rangle + q \langle \hat{n}_{i+1} \rangle - (p+q) \langle \hat{n}_i \rangle + (p-q) \langle \hat{n}_i (\hat{n}_{i+1} - \hat{n}_{i-1}) \rangle$$
(4)

を導出できる.





# 3 ASEP と Burgers 方程式の対応

本研究で提案する DNLS を経由した Burgers 方程式の導出との比較の為,ここでは従来の導出法について簡単にレビューする [5].前節で導出した,粒子密度の時間発展方程式 (4) に対し,平均場近似を行い,連続極限をとると Burgers 方程式が導出される.初めに,式 (4) の右辺第 3 項  $\langle \hat{n}_i(\hat{n}_{i+1} - \hat{n}_{i-1}) \rangle$  を  $\langle \hat{n}_i \rangle \langle \hat{n}_{i+1} - \hat{n}_{i-1} \rangle$  に置き換え,粒子間の相関を無視する近似を行う.

$$\frac{d}{dt}\langle \hat{n}_i \rangle = p \langle \hat{n}_{i-1} \rangle + q \langle \hat{n}_{i+1} \rangle - (p+q) \langle \hat{n}_i \rangle + (p-q) \langle \hat{n}_i \rangle \langle \hat{n}_{i+1} - \hat{n}_{i-1} \rangle.$$
(5)

次に,連続極限  $\langle \hat{n}_j \rangle \rightarrow \rho(x_j, t)$  を考え,時間を  $at \rightarrow t$  とリスケールすると, Burgers 方程式

$$\partial_t \rho = a D \partial_x^2 \rho - 2\alpha \rho + 4\alpha \rho \partial_x \rho \tag{6}$$

が導出される.

# 4 DNLS と Burgers 方程式の対応

本節では、微分型非線形 Schrödinger 方程式(DNLS)から Burgers 方程式が直接導出される事を示す. DNLS 型のハミルトニアン

$$-\hat{\mathcal{H}}_{\rm DNLS} = a^2 D \int dx \hat{\psi}^{\dagger} \partial_x^2 \hat{\psi} - 2a\alpha \int dx \hat{\psi}^{\dagger} \partial_x \hat{\psi} - 2a^2 \alpha \int dx \hat{\psi}^{\dagger} (\partial_x \hat{\psi}^{\dagger}) \hat{\psi} \hat{\psi}$$
(7)

に従って時間発展する系を考える.ここで、 $\hat{\psi}, \hat{\psi}^{\dagger}$ は場の演算子であり、交換関係  $[\hat{\psi}(x), \hat{\psi}(y)] = [\hat{\psi}^{\dagger}(x), \hat{\psi}^{\dagger}(y)] = 0, [\hat{\psi}(x), \hat{\psi}^{\dagger}(y)] = \delta(x-y)$ を満たす.3節と同様に、境界条件は周期的境界条件とする.DNLS は、可積分系であり、また ASEP との対応関係が示唆されている [6, 8].特に、 $\hat{\mathcal{H}}_{DNLS}$ 内のパラメータ a b a = 1/Lとした時、サイト数 Lの ASEP と対応づけられる.運動方程式は

$$\partial_t \hat{\psi}(x,t) = a^2 D \partial_x^2 \hat{\psi}(x,t) - 2a\alpha \partial_x \hat{\psi}(x,t) + 4a^2 \alpha \hat{\psi}^{\dagger}(x,t) \hat{\psi}(x,t) \partial_x \hat{\psi}(x,t)$$
(8)

と書ける.以下で,運動方程式(8)から,Burgers方程式が導出される事を示す.

N粒子状態の正規直交規定  $|x_1, \cdots, x_N\rangle = \frac{1}{\sqrt{N!}}\hat{\psi}^{\dagger}(x_1)\cdots\hat{\psi}^{\dagger}(x_N)|0\rangle$ を導入し、状態ベクトルを

$$|f\rangle = a^{\frac{N}{2}} \int dx_1 \cdots dx_N f(x_1, \cdots, x_N) |x_1 \cdots x_N\rangle$$
(9)

と表す.  $f(x_1, \dots, x_N)$ は, N粒子分布関数である. 任意の時刻 t での状態ベクトルは  $|f,t\rangle = e^{-\hat{\mathcal{H}}_{\text{DNLS}}t}|f\rangle$ と書ける. 2節と同様に,射影状態  $|s\rangle = e^{\hat{X}}|0\rangle$ ,  $\hat{X} = \int dx a^{-\frac{1}{2}}\hat{\psi}^{\dagger}(x)$ を導入すると,任意の物理量  $\hat{A}$ の 期待値は  $\langle \hat{A} \rangle = \langle s | \hat{A} | f, t \rangle$  と表される. また,次の関係式

$$\hat{\psi}(x)|s\rangle = a^{-\frac{1}{2}}|s\rangle \tag{10}$$

が成立する.すなわち、射影状態  $\langle s |$  は消滅演算子  $\hat{\psi}$  の固有値  $a^{-\frac{1}{2}}$  の固有ベクトルになっている.

以上をふまえて,式 (8) を変形する. 粒子密度分布関数  $\rho(x,t) = \langle s | \hat{\rho}(x) | f, t \rangle = a^{-\frac{1}{2}} \langle s | \hat{\psi}(x) | f, t \rangle$  を導入し,式 (8) に左から射影状態  $\langle s |$ ,右から状態ベクトル  $| f, t \rangle$  を作用させると,

$$a^{\frac{1}{2}}\partial_t\rho(x,t) = a^{\frac{5}{2}}D\partial_x^2\rho(x,t) - 2a^{\frac{3}{2}}\alpha\partial_x\rho(x,t) + 4a^{\frac{3}{2}}\alpha\langle s|\hat{\psi}(x)\partial_x\hat{\psi}(x)|f,t\rangle$$
(11)

となる.次に、N粒子分布関数を1粒子分布関数の積で

$$f(x_1, \cdots, x_N, t) \sim \prod_{j=1}^N f(x_j, t)$$
 (12)

と近似する. すると, 式(11)の右辺第3項は

$$\langle s|\hat{\psi}(x)\partial_x\hat{\psi}(x)|f,t\rangle \sim \partial_x \left[\binom{N}{2}f(x,t)^2\right] = \frac{N-1}{N}\rho(x,t)\partial_x\rho(x,t) \tag{13}$$

となる.時間を $at \rightarrow t$ とリスケールすると、式(11)から、Burgers 方程式

$$\partial_t \rho = a D \partial_x^2 \rho - 2\alpha \partial_x \rho + 4\alpha \frac{N-1}{N} \rho \partial_x \rho \tag{14}$$

が導出される.

3節において ASEP から導出した Burgers 方程式 (6) と, DNLS から導出した Burgers 方程式 (14) を 比較してみると,右辺第 3 項の係数に違いがある事が確認される.DNLS から導出した Burgers 方程式 (14)の右辺第 3 項には, (N-1)/N という係数があるが,これは ASEP の有限粒子補正項という意味を 持つ.2節で紹介した方法では,熱力学的極限を考えている為,粒子数 N が無限である事が前提となっ ている.実際,DNLS から導出した式 (14) に対して,粒子数無限大の極限をとる事で,式(6)が導出され る.式(14)の右辺第 3 項の係数 (N-1)/N が有限粒子補正項と対応する事の詳細の議論は,[7]を参照頂 きたい.

# 5 まとめ

本研究では、ASEPと関連する可積分系間の数理構造を調べた.初めに、ASEPの定式化を行い、平均場 近似、及び連続極限をとる事で、可積分偏微分方程式である Burgers 方程式が導出されることをレビュー した.次に、可積分場の理論である DNLS を導入し、運動方程式から Burgers 方程式が導出される事を示 した.また、DNLS から導出された Burgers 方程式を ASEP から導出されたものと比較し、DNLS から 導出されたものは ASEP の有限粒子補正項が含まれる事を紹介した.本研究によって、可積分確率模型 (ASEP)・量子可積分系 (DNLS)・古典可積分方程式 (Burgers 方程式) という3つの可積分系間の対応 関係が明確になった.今後、これらの数理構造を用いることで、可積分系の量子古典対応等の理解の進展 に貢献できる事を期待している.

# 参考文献

- [1] B. Derrida, Phys. Rep **301** 65 (1998)
- [2] A. Schadschneider, Physica. A 285 101 (2000).
- [3] R. A. Blythe and M. R. Evans, J. Phys. A 40 R333 (2007).
- [4] O.Golinelli and K. Mallick, J. Phys. A **39** 12679 (2006).
- [5] 笹本智弘, 物性研究, 79 5 881 (2003)
- [6] T. Sasamoto and M. Wadati, J. Phys. Soc. Jpn 67 3 784 (1998).
- [7] Y. Ishiguro, J. Sato and K. Nishinari, arXiv:2005.03715 (2020).
- [8] A. Kundu and B. Basu-Mallick, J. Math. Phys **34** 1052. (1993).

# 樟脳型自己駆動粒子モデル

#### 大澤智興1

#### 1九州工業大学大学院 情報工学研究院 物理情報工学研究系

#### 概要

水に浮かべた樟脳粒は、直線的な運動を引き起こすため、自己駆動粒子として考えられる。こ の特徴的な運動を動的フロアフィールドモデルを用いてモデル化を行った。動的フロアフィー ルドモデルを用いると、樟脳粒の存在していた位置から回避する移動ルールを構成することが できる。このモデルの数値計算では、直進性を再現することができた。さらに、本モデルを解 析的に計算すると、樟脳強度分布を求めることができ、この直進性のメカニズムも理解できた。

# A model of camphor-type self-driven particle

# Chikoo Oosawa<sup>1</sup>

<sup>1</sup> Department of Physics and Information Engineering, Graduate School of Information Engineering, Kyushu Institute of Technology

#### Abstract

Camphor particle floating on water is recognized as self-driven particle. A wide variety of motions of camphor particles has been modeled by partial differential equations. Here the author proposes dynamic floor filed model to deal with one of the motions, especially straight motion. With using the dynamic floor field model, self-avoding rule can be formulated, leading to a model for the motion. Numerical results from the model can reproduce a typical behavior of camphor particle. In addition, analytical results show that mechanism of the motion is sensitive to difference of camphor intensity before and after particle.

# 1 はじめに

樟脳粒を水面に浮かべると、自己駆動粒子として 振る舞うことが知られている [1–5]。樟脳分子は、樟 脳粒から溶解し水の表面へ拡散するが、この樟脳の 濃度が高い方が表面張力が低くなり、結果的に、樟 脳粒は表面張力の大きい方へ、つまり樟脳濃度が低 い方向へ移動する。このような自己駆動粒子は、(偏) 微分方程式によりモデル化されてきた [1–5]。本報 告では、人や動物などの自己駆動粒子間の追従現象 を再現するために局所的引力相互作用として用いら れている動的フロアフィールド (DFF) モデル [6] を 樟脳粒の駆動力として用いたセルオートマトンモデ ルを構築した。

# 2 樟脳粒の移動モデル

本モデルにおける時間と空間は離散化されている (図1)。ここでは簡単のため空間は1次元に限定、さらに樟脳粒も1つのみの場合のみを考える。



図 1: ●は樟脳粒を示す。粒の移動確率は式 (1),式 (2) から求まる。 DFF モデルを用いて樟脳粒からの樟脳の溶解、拡 散、消化をモデル化した (図 2,3)。DFF モデル [6] における粒子からの足跡 ( $f_p$ )を樟脳粒から溶解する 樟脳強度と捉える。さらに、時間ステップ t 毎に樟脳 粒から一定強度  $f_p(>0.0)$  で溶解する (図 2)。DFF モデルの  $f_p$  と同様に、樟脳分子も x 軸の正負方向 に等方的に拡散速度  $\alpha(0 \le \alpha \le \frac{1}{2})$  で拡散するとと もに、空中へ昇華 (分解) することで、マス目から速 度  $\delta(0 < \delta < 1)$  で減衰する (図 3)。



図 2: 樟脳の溶解:●は樟脳粒を示す。マス目中の 0.0 は、初期樟脳強度である。



図 3: 拡散、昇華後の樟脳強度 I 分布

このように形成された樟脳強度 I 分布に依存して、 樟脳粒は時間ステップ t 毎に粒の正または、負の方 向にそれぞれ、確率 P(x+1), P(x-1) で移動する (図1)。具体的には、[6] にあるように、フェルミルー ル (ソフトマックス関数) を用いて、

$$P(x+1) = \frac{\exp(k_D I(x+1))}{\exp(k_D I(x+1)) + \exp(k_D I(x-1))}$$
(1)

$$P(x-1) = \frac{\exp(k_D I(x-1))}{\exp(k_D I(x+1)) + \exp(k_D I(x-1))}$$
(2)

である。ここで、I(x+1), I(x-1)は、それぞれ樟脳粒の正側、負側の樟脳強度を示す。 $k_D$ は樟脳粒の 樟脳強度に対する選好度合いを示し、 $k_D < 0$ では、 確率的に高強度を回避し、より低強度の方向に移動 しやすくなる。このように DFF を用いた樟脳粒の 自己駆動粒子モデルは、時間ステップt毎に、樟脳 の溶解、拡散、昇華、樟脳粒の移動が含まれる反応 拡散散逸系である。

#### 3 数値解

#### **3.1** *k*<sub>D</sub> 依存性

2節に示した手続き実行時には、*L*ステップ実行 するために、1次元 (2*L*+3)個のマス目を用意し、 その中心を樟脳粒の初期位置 (x = 0) とした。さら に、全てのマスの初期樟脳強度を 0.0 とした。図 4 は、 $t = 10^3$  まで計算し、その到達位置  $x_t$  を求め、 同様の計算を  $10^3$  回繰り返し、到達位置  $x_t$  の頻度分 布 f を示している。計算条件を  $\alpha=0.5,\delta=0.1, f_p=1.0$ に固定し、 $k_D$  は -20.0, -10.0, -5.0, -1.0, 0.0 へ変 化させた場合を示している。 $k_D = 0.0$  では樟脳強度 分布に依存しなくなり、ランダムウォーク (RW) と なり、その分布は正規分布状になった。 負の  $k_D$  で は  $x_t$  の分布は、左右に広がり、より小さい負では、 樟脳粒は右往左往することが少なくなり、ほぼ一方 向に移動する頻度が上昇した。このように実験で観 察される樟脳粒で見られる現象 [2,4] が再現できた。 このような直進性のメカニズムを調べるために、3.2 節に示す条件で計算を行った。



図 4: 到達位置  $x_f$  の  $k_D$  依存性、赤: $k_D = 0.0$ 、 灰: $f \propto \exp(-x_f^2)$ 、緑: $k_D = -5.0$ 、青: $k_D = -10.0$ 、黒: $k_D = -20.0$  である。





図 5: 到達位置  $x_f$  の  $\delta$  依存性、赤: $\delta = 0.9$ 、 灰: $f \propto \exp(-x_f^2)$ 、緑: $\delta = 0.5$ 、青: $\delta = 0.3$ 、 黒: $\delta = 0.1$  である。

図 5 は、 $\alpha$ =0.5, $k_D$ =-20.0, $f_p$ =1.0 に固定し、 $\delta$  を変 化させた場合の結果を示している。大きい $\delta$  = 0.9 では、昇華速度が大きく、RW に近くなることを示 している (図 6 赤)。従って、図 4, 図 5 は、高強度か らの回避により直進性を獲得していることを示して いる。

# 4 解析解

#### 4.1 式の導出

ここで、樟脳強度 I の時刻 t と位置 x を、I(t, x) と 表記し、これを  $\alpha, \delta, f_p$  の関数として表現する。t = 0では、図 3 に示したように、

$$I(0, -1) = \frac{1}{2}\alpha(1 - \delta)f_p$$
(3)

 $I(0,0) = (1-\alpha)(1-\delta)f_p$ (4)

 $I(0,1) = \frac{1}{2}\alpha(1-\delta)f_p$ (5)

となる。ここでは、3 節において示したように、ほ ぼ一方向に移動した状況、つまり時間ステップ t 毎 に右に 1 マス毎移動したと仮定して、解析的に強度 分布 I(t, x) を求めた (A.1,A.2)。

#### 4.2 樟脳強度分布

図 6 は、t = 4における樟脳強度分布 I(4, x) を、 種々の  $\alpha, \delta$  で示した結果である。大きい  $\delta(\boxtimes 6 \pi)$ では、粒前後の強度差が小さくなり、結果として、3 節で示したように、その振る舞いが RW に近くなる と理解できる。また小さい  $\delta$  では、進行方向より後 方の強度が高くなり、一方向へ移動する確率が上昇 することが理解できる。図 3 や、式 (3)~(5) に示す ように、t = 0 では、樟脳強度の空間的な対称性は保 たれているが 一旦、どちらか一方向に動き出すと、 強度分布が形成され (A.1,A.2)、特に小さい $\delta$ では、 進行方向を反転しづらくなることがわかる。



図 6: t = 4における解析解から得られた強度分布、 x = 4に樟脳粒がある。移動確率に用いられるのは、  $x = 3 \ge x = 5$ の強度 I である。黒: $\alpha = 0.0, \delta = 0.0$ 、灰: $\alpha = 0.5, \delta = 0.1$ 、青: $\alpha = 0.5, \delta = 0.3$ 、 緑: $\alpha = 0.5, \delta = 0.5$ 、赤: $\alpha = 0.5, \delta = 0.9$  である。

#### 4.3 樟脳粒子の直進性

実験や微分方程式の解析 [4,5] によると、樟脳粒 を浮かべた溶液の粘度が低い (高温の溶液) 場合 [4] に直進性がみらる。本モデルの結果である、図 4 の  $k_D(=-20.0)$ で樟脳粒の直進性がみられた。従って、 本モデルは、低粘度 (高温)溶液条件下の定性モデル に対応すると考えられる。

# 5 まとめ

DFF モデルを樟脳粒の推進の原因として用い、直 進運動性をモデル化した。そのモデルを用いて数値 解と樟脳強度 I の解析解を求め、それらの結果を比 較し、直進する運動性の因果関係を説明した。図6の ような強度分布 I に対応する樟脳濃度分布は、[2,4,5] にも示され、さらに、本モデルや [4] においても、式 (1),(2) にあるように樟脳強度 I や樟脳濃度に駆動力 が非線形に依存する仮定を採用しており、本モデル も定性的に適切なモデルであるといえる。

またδが小さい条件では、空間に移動履歴が樟脳 強度として記憶、蓄積され、結果として RW から遠 ざかり非マルコフ性を獲得する自己駆動粒子モデル とみることができる。

本報告では、1次元上の単一粒子について述べた が、2次元上の追跡(捕食)-逃避(被食)関係[7]にあ る複数種かつ多粒子の条件にも適用した[8]。

# 参考文献

- K.Nishi, K.Wakai, T.Ueda, M.Yoshii,
   Y.S.Ikura, H.Nishimori, S.Nakata,
   M.Nagayama, Phys.Rev.E 92,022910(2015).
- [2] H.Nishimori, N.J.Suematsu, S.Nakata, J.Phys.Soc.Jpn. 86,101012(2017).
- [3] Y.Matsuda, K.Ikeda, Y.Ikura, H.Nishimori, N.J.Suematsu, J.Phys.Soc.Jpn. 88,093002(2019).
- [4] M.Nagayama, S.Nakata, Y.Doi,Y.Hayashima, Physica D 194,151(2004).
- [5] Y.Koyano, T.Sakurai, H.Kitahata, Phys. Rev. E 94,042215(2016).
- [6] A.Kirchner, K. Nishinari, A. Schadschneider, Phys. Rev. E 67,056122(2003).
- [7] A.Kamimura, T.Ohira, New J.Phys. 12,053013(2010).
- [8] C.Oosawa 2020 年度日本数理生物学会 (JSMB2020), PS25, p126.

# A 解析解

## A.1 I(1,\*)の式

t = 1における強度分布を式 (6)~(10) に示す。拡散は時間ステップ t 毎に 1 マスごと広がるため、t = 1 では下に示すように、I(1, -2) ~ I(1, 2)のように 5 つの式で表現できる。

$$I(1,-2) = \frac{1}{4}\alpha^2 (1-\delta)^2 f_p$$
(6)  

$$I(1,-1) = (1-\alpha)\alpha (1-\delta)^2 f_p$$
(7)

 $\alpha = 0$ では、樟脳粒の進行方向と逆側では、図6黒のように、樟脳強度は0になる。

$$I(1,0) = (1-\alpha)^2 (1-\delta)^2 f_p + \frac{1}{4} \alpha^2 (1-\delta)^2 f_p + \frac{1}{2} \alpha (1-\delta) \left( f_p + \frac{1}{2} \alpha (1-\delta) f_p \right)$$
(8)

$$I(1,1) = \frac{1}{2}(1-\alpha)\alpha(1-\delta)^2 f_p + (1-\alpha)(1-\delta)(f_p + \frac{1}{2}\alpha(1-\delta)f_p)$$
(9)

x = 1に樟脳粒がある。移動確率の計算に用いられるのは、I(1,0)とI(1,2)である。

$$I(1,2) = \frac{1}{2}\alpha(1-\delta)\left(f_p + \frac{1}{2}\alpha(1-\delta)f_p\right)$$
(10)

下線部で示した式 (8) の第 3 項は、式 (10) に一致する。つまり、 $\delta \neq 1$  では、常に I(1,0)>I(1,2) となる。

# A.2 *I*(2,\*)の式

t = 2における樟脳強度分布を式 (11)~(17) に示す。拡散は時間ステップ t 毎に 1 マスごと広がるため、 t = 2 では下に示すように、 $I(2, -3) \sim I(2, 3)$  に示すように 7 つの式で表現できる。

$$I(2,-3) = \frac{1}{8}\alpha^3 (1-\delta)^3 f_p$$
(11)

$$I(2,-2) = \frac{3}{4}(1-\alpha)\alpha^2(1-\delta)^3 f_p$$
(12)

$$I(2,-1) = \frac{1}{8}\alpha^3(1-\delta)^3 f_p + \frac{1}{2}\alpha(1-\delta)\left(\frac{1}{4}\alpha^2(1-\delta)^2 f_p + (1-\alpha)^2(1-\delta)^2 f_p + \frac{1}{2}\alpha(1-\delta)\left(\frac{1}{2}\alpha(1-\delta)f_p + f_p\right)\right) + (1-\alpha)^2\alpha(1-\delta)^3 f_p$$
(13)

 $\alpha = 0$ では、樟脳粒の進行方向と逆側では、図6黒のように、樟脳強度は0になる。

$$I(2,0) = \frac{1}{2}(1-\alpha)\alpha^{2}(1-\delta)^{3}f_{p} + (1-\alpha)(1-\delta)\left(\frac{1}{4}\alpha^{2}(1-\delta)^{2}f_{p} + (1-\alpha)^{2}(1-\delta)^{2}f_{p} + \frac{1}{2}\alpha(1-\delta)\left(\frac{1}{2}\alpha(1-\delta)f_{p} + f_{p}\right)\right)$$

$$+ \frac{1}{2}\alpha(1-\delta)\left(\frac{1}{2}(1-\alpha)\alpha(1-\delta)^{2}f_{p} + (1-\alpha)(1-\delta)\left(\frac{1}{2}\alpha(1-\delta)f_{p} + f_{p}\right)\right)$$

$$I(2,1) = \frac{1}{2}\alpha(1-\delta)\left(\frac{1}{4}\alpha^{2}(1-\delta)^{2}f_{p} + (1-\alpha)^{2}(1-\delta)^{2}f_{p} + \frac{1}{2}\alpha(1-\delta)\left(\frac{1}{2}\alpha(1-\delta)f_{p} + f_{p}\right)\right)$$

$$+ (1-\alpha)(1-\delta)\left(\frac{1}{2}(1-\alpha)\alpha(1-\delta)^{2}f_{p} + (1-\alpha)(1-\delta)\left(\frac{1}{2}\alpha(1-\delta)f_{p} + f_{p}\right)\right)$$

$$I(2,2) = \frac{1}{2}\alpha(1-\delta)\left(\frac{1}{2}(1-\alpha)\alpha(1-\delta)^{2}f_{p} + (1-\alpha)(1-\delta)\left(\frac{1}{2}\alpha(1-\delta)f_{p} + f_{p}\right)\right)$$

$$(15)$$

$$+ (1-\alpha)(1-\delta)\left(\frac{1}{2}\alpha(1-\delta)\left(\frac{1}{2}\alpha(1-\delta)f_p + f_p\right) + f_p\right)$$

$$(16)$$

x = 2に樟脳粒がある。移動確率の計算に用いられるのは、I(2,1)とI(2,3)である。

$$I(2,3) = \frac{1}{2}\alpha(1-\delta)\left(\frac{1}{2}\alpha(1-\delta)\left(\frac{1}{2}\alpha(1-\delta)f_p + f_p\right) + f_p\right)$$
(17)

下線部で示した式 (15) の右辺第 3 項は、式 (17) に一致する。つまり、 $\delta \neq 1$  では、常に I(2,1)>I(2,3) となる。

# 非線形感覚運動写像ロボットの対面流

-1方向走行流への転移と流量のコース幅依存性 -

李 方正<sup>1</sup>,橋爪晋平<sup>2</sup>,本田 泰<sup>3</sup>

2 室蘭工業大学大学院 工学研究科 情報電子工学系専攻
 2 室蘭工業大学 工学部 情報電子工学系学科
 3 室蘭工業大学大学院 しくみ解明系領域

#### 概要

昆虫の群れ行動や混雑した状況での人間の歩行など,自己駆動粒子の対面流 (Counter flow) は広 く存在する現象である.そこでは,レーン形成など自己組織化的な興味深い現象が観察される. 本研究では,われわれは非線形関数 (双曲線関数)による感覚運動写像ロボットを開発し,障害 物回避可能な自己駆動粒子とみなす.そのロボットを使って,擬楕円コースでいくつかのコース 幅の対面走行実験を行った.対面流から1方向走行流への自律的な転移現象が観測された. ロボットの速度,流量および1方向走行流になるまでの時間を測定した.

# Counter flow of robots based on non-linear sensorymotor mapping

– Dependence on the course width of transition to one-direction flow and flow rate –

Li Fangzheng<sup>1</sup>, Shimpei Hashizume<sup>2</sup>, Yasushi Honda<sup>3</sup>

<sup>1</sup> Division of Information and Electronic Engineering, Graduate School of Engineering, Muroran Institute of Technology, Japan

<sup>2</sup> Department Information and Electronic Engineering, School of Engineering, Muroran Institute of Technology, Japan

<sup>3</sup> College of Information and Systems, Muroran Institute of Technology, Japan

#### Abstract

Counter flow of self-driving particles which include insect herd behavior and human walking in crowded situations is a widespread phenomenon.

In this study, we have developed sensorimotor-mapping robot which can avoid obstacles using nonliner function (hyperbolic function) and we regard those robots as self-driving particle.

Then we have carried out experiments in which these robots start from a counter flow in some oval-course, and we found a transition phenomenon from counter flow to one-direction flow. We have measured the flow rate and the transition time to one-direction flow.

# 1 はじめに

実世界で,蜂,アリなどの昆虫が簡単な行動メカ ニズムによって,複雑な群れ行為ができる.また, 大きな交差点などにおいて,人間は密度が高くても,2.3 会話なしで,ぶつからないようにスムーズに対面歩 行ができる.

池田ら [1] は,非常に密度の高い自己駆動粒子の 対面流において異方性を考慮することによってレー ン形成が生成することを見出した.

本論文では,我々は原生生物レベルの反応行動の ための知能を持つ走行ロボットを開発した.コース 幅が限られたコースにおける,その走行ロボットの 対面走行を実験的に観察する.

今回,最大8台使われるロボットを時計回りと反時計回りの2つグループを分けて楕円コースでの対面走行を実験を行った.コース幅を変化させ,ロボットの振舞いを観察した.ロボットが,1方向走行流になるまでの時間と流量などロボットの基本的な走行情報を測定した.

# 2 非線形感覚運動写像ロボット

#### 2.1 ロボットの身体性

今回使っているのは4輪走行ロボットである,人間や昆虫の走行特徴に近似するため,その場で曲が り,方向転換が可能である.距離センサーが赤外線 の反射で距離を測るので,超音波より測る範囲が狭いが,体積が小さく,精度が高くて,複数ロボット の場合,ロボット同士間の妨害も減少できる.



図 1: 正面図, A,B,C:右,中央,左の距離センサー; D:カメラ(今回使っていない); E,F:左右のモーター; 左右センサー角度:45°; ロボット幅:13.5cm; ロボッ ト長さ:20.2cm; ロボット高さ:12.2cm;

## 2.2 ロボット駆動アルゴリズム

感覚運動写像とは,センサー値を変数とする関数 によってモーターの出力を決定することであり,そ の瞬間のセンサー値だけを使う,最も単純な反応行動のための知能の一つである[2].本研究では,非線形感覚運動写像モデルが使われている.

#### 2.3 距離データの加重相乗平均

中央のセンサーによる距離データを  $d_{\rm C}$ ,また,左 のセンサーによる距離データを  $d_{\rm L}$ とする.それら を用いて,左の感覚運動写像の入力  $x_{\rm L}$ を加重相乗 平均によって求める (式 (1)).同じように, $d_{\rm C}$ と右 のセンサーから得られた距離データ  $d_{\rm R}$ を用て右の 感覚運動写像の入力  $x_{\rm R}$ を求める (式 (2)).

$$x_{\rm L} = d_{\rm C}^{\gamma} \times d_{\rm L}^{(1-\gamma)} \tag{1}$$

$$x_{\rm R} = d_{\rm C}^{\gamma} \times d_{\rm R}^{(1-\gamma)} \tag{2}$$

 $\gamma$  は重みであり,本研究においては  $\gamma = 0.33$  とする.  $\gamma = \frac{1}{3}$  とすることにより,左のセンサー,中央のセ ンサーおよび右のセンサーがそれぞれ, $\frac{2}{3}$ の等加重 となる.

#### 2.4 非線形感覚運動写像

本研究においては,式(1)と式(2)で得られた $x_L$ と $x_R$ を式(3)と式(4)に代入して,ロボットの右 モーターの出力( $m_R$ )と左モーターの出力( $m_L$ )を 計算する.係数 $\alpha$ がロボットの最大速度を制御する, 係数 $\beta$ が tanhの傾きを制御する.係数bが関数の 変曲点の位置である.係数cは関数の縦軸上の位置 を制御する.

$$m_{\rm R} = \alpha \tanh(\beta_1(x_{\rm L} - b_{\rm L})) + \alpha \tanh(\beta_2(x_{\rm L} - b_{\rm L})) + c$$
(3)

$$m_{\rm L} = \alpha \tanh(\beta_1(x_{\rm R} - b_{\rm R})) + \alpha \tanh(\beta_2(x_{\rm R} - b_{\rm R})) + c$$
(4)

本研究の実験のパラメーターは  $\alpha = 30\%$  とする. すなわちロボットは最高速度の 60%の速度で走行す

る.また, $\beta_1 = 0.004, \beta_2 = 10, c = 0$ とする. 8台のロボット (N = 8)を4台ずつ以下の2グ ループに分けて走行実験を行った.ロボットグルー プ1では $b_L = 160$ mm, $b_R = 260$ mm, また,ロボッ トグループ2では $b_L = 260$ mm, $b_R = 160$ mm と する.

#### **2.5** *b* の値と右左折方向の関係

たとえば, $b_{\rm R} = 160 \text{mm}(\boxtimes 2 \text{ o A } \texttt{h})$ , $b_{\rm L} = 260 \text{mm}(\boxtimes 2 \text{ o B } \texttt{h})$ の場合 (ロボットグループ2)を

考える. 左右の距離データ  $d_{\rm L} = d_{\rm R}$  の場合,  $x_{\rm L} = x_{\rm R}$  である. 図 2 からも分かる通り,右のモーター出力 ( $m_{\rm R}$ )が左のモーター出力( $m_{\rm L}$ )より小さくる.した がって,このロボットグループ2は右に曲がりやす い傾向を持つ.

逆にロボットグループ1は左に曲がりやすい傾向 を持つ.



図 2: *b* = 160mm と *b* = 260mm の tanh 関数の曲線

# 3 走行実験

本研究では,直線と円形のコース組み合わせ,擬 楕円コースで実験する.図3に示したコース内の青 い部分にロボットをランダムに配置する.半数のロ ボットが時計回り残りのロボットが反時計回りの向 きで,速度0からほぼ同時にスタートし,約8分間 走行する.

ロボットは距離センサーでコース内の障害物(コー スの壁と他のロボット)までの距離を検出し,非線 形感覚運動写像モデルにより走行する.

レーンのセンターライン (図 3 黒い線) でコースの 長さ (L = 7.32m)を規定する.ロボットの線密度は  $\rho = \frac{N}{L} = 1.09(\text{d/m})$ である.

内側と外側の両側の壁を移動させ、コースの幅 (w) を 43cm, 49.5cm, 56cm, 62.5cm および 69cm へ変 化させ,実験する.



図4の赤い線を計測ラインとして,ロボットが左 エラーバーとして示した.

から右へ線を通過したら通過台数を +1, 右から左 へ線を通過したら通過台数を -1 とみなす.図4に おいて,ロボットが赤い線から反時計回りで黒い線 まで移動して, $\theta$ が0から $\pi$ に変わる.赤い線から 時計回りで黒い線まで移動して, $\theta$ が0から $-\pi$ に 変わる.

対面走行流における全通過台数を n<sub>i</sub> とする.な お,本研究では,対面走行流の性質を調べるため, 1方向走行流における通過台数は n<sub>i</sub> に加算してい ない.

T<sub>1d</sub> は走行開始から 1 方向走行流状態になるまで の時間 (分), w がコースの幅 (単位:m)を表す.流 量 Q<sub>i</sub>を式 (5) で定義し,その平均値を式 (6) で計算 する.

$$Q_i = \frac{|n_i|}{wT_{\rm 1d}} \tag{5}$$

$$\bar{Q} = \frac{1}{N_{\text{exp}}} \sum_{i=1}^{N_{\text{exp}}} Q_i \tag{6}$$

iは実験回数を,また $N_{exp}$ は全実験回数を表す.本 研究では,w = 43cmの実験では $N_{exp} = 4$ ,それ以 外のコース幅の実験においては, $N_{exp} = 30$ である.

## 4 実験結果

## 4.1 T<sub>1d</sub>の測定

図 5 の 8 個グラフは一回の実験での,8 台ロ ボット毎の θ(図 4 参照) と時間の測定結果である,あ る 1 回の実験における,8 台のロボット毎の走行結果 を示している.横軸は時間(秒),縦軸は角度 θ(rad) である.

*T*<sub>1d</sub> とは全てのロボットが方向転換せず,同じ向きで走る(1方向走行流)状態になるまでの時間である,図5中の黒い線はロボットが方向転換しなくなるまでの時間,その中で一番長いものを*T*<sub>1d</sub>とする.

#### 4.2 幅による *T*<sub>1d</sub> と流量の測定

w = 43cmのコース幅で 4 回 (毎回 8 分間),49.5cm,56cm,62.5cm,69cmのコース幅で 30 回 (毎回 8 分間)実験する.1実験毎に,ランダムにロ ボットを 2 つグループを分ける. $T_{1d}$ (分) と  $Q_i$ (台 /(m分))を計測して,平均値と標準偏差を計算する. 図 6 はコース幅 (w)による, $T_{1d}$ の平均値  $\bar{T}_{1d}$ の変 化曲線である.図7がコース幅による,平均流量( $\bar{Q}$ ) の変化曲線である.オレンジ色の縦線は標準偏差を エラーバーとして示した.



図 5: コース中心から見たロボットの角度 θ の時間変化



幅が狭すぎる (43cm) と,長時間の渋滞が発生したことを観測した.ロボット同士のすれ違い,方向転換ができず,1方向走行流の状態にならなかった. 大渋滞なので,流量もほとんどない.

49.5*cm* の場合,渋滞も発生したので,1方向走行 流になる時間(*T*<sub>1d</sub>)も長かったが,ロボットが方向 転換できたので,流量も多少増えた.56*cm* から渋 滞の発生が急激に減少し,ロボットの方向転換もし やすくなり,*T*<sub>1d</sub> が減少した.以降コース幅が拡大 して,*T*<sub>1d</sub> がだんだん減少した.

流量については,56cm まで平均流量が増えて,



69cm まで流量に明らかな変化が見られなくなった.

#### 5 まとめ

本研究で用いたロボットは最適速度ロボット [3] の ような,他のロボットを追いかける機能はついてな い.それにもかかわらず,単純な障害物回避アルゴ リズムによって,対面走行流は最終的に1方向走行 流に転移することがわかった.

その転移時間はコース幅が大きくなるにつれて減 少していく傾向を見出した.

また,コース幅が十分に大きくなると流量も一定 になる傾向があることを観測した.

実世界のアリ,蜂などの昆虫の匂いで作られたコー スのような空間の中,単純な障害物を避ける行為で 自律的にレーン形成したことと類似の現象が観測さ れたと考えられる.

今後の実験で,ロボットの線密度を増やすことに よって,より実世界の人間などの対面流行動と類似 の行動が観測されると予測される.

# 参考文献

- [1] 池田光佑,金鋼「対向する自己駆動粒子系にお けるレーン形成とその動的な転移の解明」第22
   回交通流と自己駆動粒子シンポジウム論文集 (2016).
- [2] 浅田稔, 国吉康夫「ロボットインテリジンス」 (2006).
- [3] 山田将司,大園章宏,本田泰「2次元最適速度ロ ボットの多様な集団紐状走行」第25回交通流 と自己駆動粒子系シンポジウム論文集(2019).
# イオンチャネルの開口ビリヤードモデル

### 中根直哉, 宮崎修次

### 京都大学 情報学研究科 先端数理科学専攻

#### 概要

Hodgkin らはイカの巨大神経繊維の電気的な測定からカリウムイオンの異常な輸送現象を観測 した. この異常な輸送現象を説明するものとして Hodgkin らは細長い通路で2つの部屋を繋い だようなモデルを構築した. このように容器内に封入された大きさのない粒子が容器の内壁と完 全弾性衝突を繰り返した後,脱出する運動をモデル化したものとして開口ビリヤード系がある. 本研究では、粒子の大きさを考慮し、粒子間衝突のある多粒子のビリヤード系についてそのビリ ヤード内滞在時間の逆冪則に従う確率分布を数値シミュレーションにより求め、遅い異常輸送と の関連について考察する.

# Open Billiard Model of Ion Channels

## Naoya Nakane, Syuji Miyazaki

Department of Advanced Mathematical Sciences, Graduate School of Infomatics, Kyoto University

#### Abstract

Hodgkin and Keynes showed that metabolic inhibitors like dinitrophenol and cyanide produce large changes in the relative magnitude of the fluxes of potassium moving inwards and outwards across the membranes of giant axons from *Sepia officinalis* and proposed such a mechanical model that two flat compartments are separated by a narrow gap with spacers. In a similar way, it is considered such a situation that point-wise particles repeatedly and elastically collide with the wall of a container without any particle-particle collision and eventually escape through a small window from the container, which can be modeled by an open billiard. In the present study, point-wise particles are replaced with finite-size disks and disk-disk collisions are also considered, and inverse power laws of distributions of dwell time in the container are obtained from numerical simulations. Relationship between the power laws and anomalous transport is discussed.

# 1 序論

生体内の分子や細胞はその複雑な動的システムの 解明のために,生物学的視点だけでなく,統計力学 などの理論物理学を用いた解析や,計算機を用いた 分子シミュレーションなどの手法によっても研究が なされている.そのような研究の対象の1つとして イオンチャネルがある.イオンチャネルは細胞の生 体膜に存在するタンパク質の一種であり,細胞内外 の環境の変化に応じてイオンの出入りを調節する. 生体膜はその疎水性からイオンをほぼ透過しないた め、イオンチャネルは筋収縮や感覚といったイオン が関わる生体現象において重要なタンパク質である. イオンチャネルの研究は 1950 年代における Hodgkin らの研究が代表的である. Hodgkin らは イカの巨大神経繊維を用いた電気的な測定によって カリウムイオンの細胞内外の移動を観測した. 正常 な受動輸送が行われる場合, Ussing が 1949 年に提 唱した流束比関係式によって流入量,流出量の比が 予測されるが Hodgkin らの測定ではこの関係式から 大きく外れた異常な輸送現象が観測された. この現 象の原因として Hodgkin らはカリウムイオンが細長 い通路のようなものを通って細胞内外の移動をして いると予測した. この予測を確かめるため Hodgkin らは以下のような粉体モデルを構築し実験を行なっ た[1]. その結果,電気的な測定と同じように Ussing の関係式から大きくずれた異常な輸送現象が観測さ れた.



図 1: Hodgkin らの粉体モデル

このような細長い廊下の構造が示す異常な輸送現 象を解析するものとして一列縦隊拡散がある[3]. 一 列縦隊拡散は粒子の追い越しを制限した1次元の系 における粒子の拡散運動について解析したものであ る. このような系では粒子が粒子の相互作用により, 粒子の平均二乗変位が時間の<sup>1</sup>/<sub>2</sub> 乗に比例する遅い異 常拡散が発生するという特徴がある.

このように Hodgkin らは細長い通路を異常輸送の 原因と考えたが、このような通路が無くとも遅い異 常輸送が起こる可能性としてビリヤード系を考える. ビリヤード系とは容器内の境界で質点が弾性的に運 動する系であり, 容器の形状によっては質点の運動 にカオスが発生することが知られている.カオスが 発生する形状の1つとしてスタジアム形がある.こ のスタジアム形のビリヤードの外周に穴を開けた系 を考える. ビリヤード内から穴を通って飛び出すま での時間の確率分布を生存時間確率分布として定義 すると、長期の生存時間確率分布が-1乗、または -2 乗のべき分布になるという先行研究がある [4]. このような特徴が Hodgkin らの実験に見られた遅い 異常輸送に関係するのではないかと考えられる.著 者らは開口ビリヤードのほか, 空間的に周期的なポ テンシャルと時間的に周期的な外力、または、相乗 雑音によって引き起こされるオンオフ間欠性によっ ても、前述の異常輸送が生じ得るのではないかと考 えているが [5], ここでは, 開口ビリヤードに関する 研究報告を行う.

本研究では、上記のビリヤード系をより現実に即 した状況に修正した系での生存時間確率分布につい ての数値解析、および考察を行う.本論文では、2 章で Hodgkin-Keynes らの研究とビリヤード系につ いての説明を行う.3章では粒径を考慮した穴の空 いたビリヤード系の数値解析の手法とその結果を示 す.4章でまとめと考察を行う.

# 2 先行研究

## 2.1 Hodgkin-Keynesの研究

Hodgkin らは 1950 年代, ヤリイカの巨大神経繊 維を用いた電気的な測定によってカリウムイオンの 膜輸送についての研究を行っていた [1]. カリウムイ オンは細胞の内外を濃度勾配に依存した受動輸送に よって移動している. その受動輸送について, Ussing が導出した以下のような流束比関係式がある [2].

$$\frac{\text{influx}}{\text{efflux}} = \exp \frac{F(E - E_k)}{RT}$$

influx は内向きの流束, efflux は外向きの流束であり, E は膜電位である.  $E_k$  は電気生理学におけるネルンストの平衡電位であり,

$$E_k = \frac{RT}{F} \ln \frac{[K]_i}{[K]_o}$$

で表される. [K]<sub>i</sub>と [K]<sub>o</sub>はそれぞれ細胞内,細胞外 のカリウムイオン濃度である.

Hodgkin らの電気的な測定では,関係式から大きく ずれた異常な輸送が観測された.Hodgkin らはこの 異常な輸送の原因として,カリウムイオンが細長い 通路を通り細胞内外を移動しているのではないかと いう予測を立て,図1のような模型を構築した[1].

この実験では2つの部屋が穴,または通路で繋が れた模型を用意し,この模型それぞれに左に100個, 右に50個の球を入れる.この模型を15秒間水平に 加振したときに部屋を移動した球の数を調べること により,イオンの輸送を再現した.先ほどのUssing の関係式を考え,左から右へ,右から左へ移動した 球の数をそれぞれ influx, efflux として捉えれば,

$$\frac{\inf \max}{\inf \max} = \frac{[K]_o}{[K]_i} = 2$$

となることが予想された.実験の結果,穴で繋がれ た模型では influx/efflux = 2.7,通路で繋がれた模 型では influx/efflux = 18 となり,電気的な測定か ら予測された通り,通路で繋がれた模型では Ussing が確認された.

よってヤリイカの軸索で見られたイオンの異常輸 送は、イオンが細長い通路を通って移動しているこ とにより発生していると考えられた.

#### Dettman の研究 2.2

ビリヤード系とは、境界に囲まれた有限領域内を 一つの質点が弾性的に運動する系である.いくつか のビリヤード系は、境界の形によってカオス性を持 つ事が知られている. その中の1つに Bunimovich が1974年に導入したスタジアムビリヤードという 系がある.

このようなビリヤード系に穴を開けた系について 考える. 質点は領域内を弾性的に運動し、ある時刻 で穴から外へ飛び出す. このような系はある時刻に おいて質点が領域内に残っている確率の分布によっ て特徴付ける事ができる. この分布を生存時間確率 分布と定義する. 先ほど挙げたスタジアムビリヤー ドで生存時間確率分布を考えると、生存時間が短い ものは指数関数的に分布し、長いものがべき分布に なる事が知られている. その長期の生存時間確率分 布を解析した先行研究 [4] があり、その分布は次の 式で表される.

$$P(t) = \frac{(3\ln 3 + 4)((a + h_1)^2 + (a - h_2)^2)}{4(4a + 2\pi r)t} + \frac{D}{t^2} + o(1/t^2)$$

aは平行な辺の1/2の長さ, rは円弧の半径,  $h_1, h_2$ はそれぞれ穴の左端、右端の位置を示している、ま た第2項の分子 D は定数であり、数値解析によって 求められる. この式よりスタジアムビリヤードでは 長期の生存時間確率分布が -1 乗, -2 乗 のべきの 足し合わせで表されることがわかる.

このような長期の生存確率の特徴から、容器の形 状を上手く選ぶことにより、Hodgkin らのモデルの ような細長い通路を設けなくとも、遅い異常な輸送 が発生するのではないかと思われる.

#### ビリヤード系の数値解析 3

## 3.1 粒子間相互作用

元のビリヤード系では1つの質点の運動を考えて いるため、粒子の大きさや容器内の多粒子が存在す る場合の粒子間相互作用などは考えられていない.

の式から大きくずれた異常な輸送が起こっている事 このままでは現実のイオンチャネルの状況とは乖離 しているため, 容器内に多粒子を配置し, 粒子の大 きさや粒子間相互作用を考慮した系を考える.今回, 粒子間相互作用は単純な剛体円盤の弾性衝突とする. この時、粒子間相互作用で容器の形状に依存しない ような挙動になると予想されるが、粒子の大きさを 小さくしていくと徐々にビリヤード系のような容器 の形状による影響が現れると考えられる. そこで今 回は、カオスが発生するスタジアム形と、発生しな い正方形を容器として用い、粒径を徐々に変化させ た時の生存時間確率分布を数値解析によって調べる.

#### 3.2数值解析手法

本研究では, 容器内で弾性衝突を繰り返す多粒子 の数値解析を event-driven 法を用いて行う. ここで は, event-driven 法の簡単な説明を行う. この手法 では粒子間の衝突や粒子と境界の衝突を event とし. event ごとに時間を進めるという手法である.時刻 t = 0において,ある 2 粒子 *i*, *j* の座標と速度がそ れぞれ  $x_{i0}, x_{j0}$ と  $v_{i0}, v_{j0}$  で表されるとする. この 時,時刻 t の座標は以下のように書ける.

 $\mathbf{x_i} = \mathbf{x_{i0}} + \mathbf{v_{i0}}t, \ \mathbf{x_j} = \mathbf{x_{j0}} + \mathbf{v_{j0}}t.$ 

このとき, 粒子 *i*, *j* が時刻 *t* で衝突する条件は 

この条件に座標  $x_i, x_i$  を代入し,整理すると時刻 tを求めることができる.

$$\dot{z} = -\frac{b_{ij} + \sqrt{b_{ij}^2 - v_{ij}^2(r_{ij}^2 - 4r^2)}}{v_{ij}^2}$$

ここで $b_{ij} = (\mathbf{x_{i0}} - \mathbf{x_{j0}}) \cdot (\mathbf{v_{i0}} - \mathbf{v_{j0}}), r_{ij} = |\mathbf{x_{i0}} - \mathbf{x_{j0}}|$ とした.

このように、衝突 (event) までの時間が計算する ことができる. そこで下のような手順を考える.

- 1. すべての粒子について,他のすべての粒子との 衝突までの時間を計算
- 2. 1. で求めた最短の時刻まで時刻 t を進める
- 3. 衝突する粒子に対し衝突処理を行う.
- 4.1から3を繰り返す.

このような手法を event-driven 法という.

しかしこのままだと1イベントあたりの計算量が O(N<sup>2</sup>)と大きすぎるため、大規模な系では高速化の 必要がある. 粒子のセルへの分割, 平衡木を用いた 衝突時刻の検索などの高速化を施すと, 1 イベント あたりの計算量は $O(\log(N))$ となる.

# 3.3 質点ビリヤード系の数値解析

粒子間相互作用を考慮した系の前にスタジアム形 と正方形での質点のビリヤード系における生存時間 確率分布の数値解析を行った.スタジアム形では,生 存時間が短いものは指数関数的に分布し,長いものは べき分布になると先行研究に述べられている.今回パ ラメータを $a = 0.05, r = 0.5, h_1 = -0.01, h_2 = 0.01$ として実際に数値解析を行った.



図 2: ビリヤード内滞在時間の両対数グラフ (紫:正方形 緑:スタジアム形)

横軸は時間 t, 縦軸は時間 t に対する生存確率で ある.図2を見ると、スタジアム形では生存時間が 指数関数的に分布し、長いものは –1 乗の逆べき分 布となり、先行研究で見られた結果が表れた.一方、 カオスが発生しない正方形では、–1 乗の逆べき分 布となった.

### 3.4 多円盤ビリヤード系の数値解析

より現実に即したモデルを考えるため,粒子間相 互作用を考慮した多粒子のビリヤード系についての 生存時間確率分布の数値解析を行った.



図 3: ビリヤード内滞在時間の両対数グラフ (正方形:紫…粒径大 緑…粒径小) (スタジアム:黄…粒径大 青…粒径小) (半径:粒径大…1.0×10<sup>-3</sup> 粒径小 1.0×10<sup>-9</sup>)

容器に関するパラメータは3.3と等しい.図3を見 ると、粒径が小さい場合はスタジアム形、正方形の 両方において、長期の生存時間確率分布がべき分布 になっている.しかし、このべきは質点のビリヤー ド系で見られたものとは異なったべきとなっている ことがわかり、粒子間の相互作用に影響を受けてい るものと思われる.

# 4 まとめと考察

イオン間相互作用を大きさのある粒子の衝突とし て実効的に輸送現象に反映させ,数値解析を行った. 粒径が大きい場合,長期の滞在時間の分布はスタジ アム形,正方形の両方とも指数関数的に分布すると いう結果が見られた.粒径が小さい場合,長期の滞 在時間の分布は大きい場合と異なり,スタジアム形, 正方形の両方ともべき分布になった.そのべきは粒 径のないビリヤードと同様に容器の形状に依存して 異なるべきとなったが,粒径のないビリヤードで見 られたべきとは異なるものとなった.粒径を考慮し ない正方形のビリヤードでの粒子の運動は非カオス の運動であるが,粒径を考慮した場合,シナイのビ リヤードと同様に混合性を持つのではないかと考え られる.その確認のために最大リヤプノフ指数を求 める必要があるので,今後の課題としたい.

# 参考文献

- A.L.Hodgkin and R.D Keynes, "The potassium permeability of a giant nerve fibre" J.Physiol. **128**,61 (1955).
- [2] H. G. L. Coster and E. P. George "A thermodynamic analysis of fluxes and flux-ratios in biological membranes" Biophisical Journal 8, 457-469 (1968).
- [3] T.Ooshida, S.Goto, T.Matsumoto, M.Otsuki, "Insights from Single-File Diffusion into Cooperativity in Higher Dimensions" Biophys. Rev. Lett, 11, 9-38 (2016).
- [4] Carl P.Dettmann, Orestis Georgiou "Survival probability for the stadium billiard" Physica D 238 2395-2403 (2009).
- [5] 宮崎,宇都宮,中根,「イオンチャネルと異常拡散」,日本物理学会第75回年次大会講演概要集,19aPS-84,(2020).

# 2次元破砕性粉体のシミュレーション

### 石川遥登<sup>1</sup>, 高田智史<sup>1,2</sup>

<sup>1</sup>東京農工大学大学院工学府機械システム工学専攻 <sup>2</sup>東京農工大学工学研究院先端機械システム部門

### 概要

離散要素法により2次元破砕性粉体の衝突シミュレーションを行い、破砕様式の変化について数 値的に調べる。2体衝突を考える場合には破砕が生じるある閾値が存在し、それが運動と結合エ ネルギーを考慮した簡単な議論で説明できることを報告する。さらにマクロな跳ね返り係数を求 めることで、破砕の様子を特徴づける。また、多粒子系に剪断をかけた系の平均破片サイズと剪 断応力の関係についても調べ、剪断応力が平均破片サイズにほとんど依存しないことを報告する。

# Simulation of two-dimensional crushable granular materials

Haruto Ishikawa<sup>1</sup>, Satoshi Takada<sup>1,2</sup>

<sup>1</sup> Department of Mechanical Systems Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology

<sup>2</sup> Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology

### Abstract

Two-dimensional simulation of crushable granular materials is performed in terms of the discrete element method. First, we investigate two-body collisions. There exists a threshold of the breakage, which is explained by a simple model between the kinetic and bond energies. We also measure the relative speed dependence of the bond number and the restitution coefficient to clarify the breakage. We also study many-body simulations under a shear condition. We find that the shear stress is almost independent of the mean cluster size of the macroscopic particles.

# 1 はじめに

我々の身の回りには存在する粉体の挙動(レオロ ジー)を理解することは、土木工学や化学工学など 工学の幅広い分野で重要な課題となっている[1]。特 にその中でも破砕現象を理解することは、安定的な 粒度分布の実現や破砕の効率化などの知見への貢献 が期待される。実際、この問題に関するシミュレー ションは数多く行われており、ブラジリアンテスト など様々な問題設定が調べられている[2,3]。破砕 現象を考えるにあたり、先行研究においては主に2 つの手法が用いられていることが多い [1]。一つ目 はマクロな粉体粒子を考えそこに基準以上の応力が 作用した際により小さな粒子群に置き換える手法で あり、二つ目は小さな粒子を多数集めそれらをボン ドで結合することによりマクロな粉体粒子を構成す る手法である。しかしながら、これらのモデルにお いては前者では粒子の置き換え方を外から与える必 要性、後者においては確率的にボンドの破砕を与え る必要があり,さらにその確率の与え方はマクロな 粒子系の実験結果を流用しているという問題がある [1]。そこで本研究においては後者のモデルを採用し つつ破砕条件として前者を採用することにより決定 論的なシミュレーションを行うことで、粉体粒子の 破砕がどのように進展していくかについての知見を ミクロな視点から得ることを目的とする。

# 2 モデルとセットアップ

本章ではシミュレーションに使用するモデルと、 セットアップについてそれぞれ述べていく。

## 2.1 モデル

シミュレーションは離散要素法 (以下 DEM) を用 いる [4]。系は 2 次元系とし、結晶化を避けるため粒 子は個数比 1:1 で直径 d、1.4d、質量 m、1.4 $^2m$  の 二分散系を考える。相互作用している粒子間には法 線方向 ( $F_{ij}^n$ )、接線方向 ( $F_{ij}^t$ )ともに線形ばね ( $k_n$  お よび  $k_t$ )とダッシュポット ( $\eta_n$  および  $\eta_t$ )で連結さ れていると仮定して計算する [4,5]。また、接線方向 に関してはクーロン摩擦を表現するために摩擦スラ イダー (摩擦係数  $\mu$ )も導入している [4,5]。

それに加えて、初期に粒子間距離が2粒子の半径 の和の(1+u)倍以内の距離にある場合、粒子同士 を結合ボンドで繋ぐことにする。ここで、結合ボン ドは粒子間相互作用が

$$\frac{-F_{ij}^n}{F_0^n} + \frac{|F_{ij}^t|}{F_0^t} \ge 1, \tag{1}$$

を満たすときに破壊され、一度これが満たされた場 合、以後はこの結合を取り除くものとする [6]。

本研究においては、各パラメータの値として  $k_t = k_n, \eta_n = \eta_t = 1.0\sqrt{mk_n}, F_0^n = F_0^t = 5.0 \times 10^{-3}k_n d,$   $\mu = 0.3, u = 5.0 \times 10^{-3}$ を用いることにする。これ に対応する粒子間のはねかえり係数は法線方向、接 線方向ともに

$$e_n = e_t = \exp\left(-\frac{\pi\eta_n}{\sqrt{2mk_n - \eta_n^2}}\right) \simeq 4.3 \times 10^{-2},$$
(2)

となる。また、粒子数 N については 3.1 章において は  $N = 10^4$ 、3.2 章においては  $N = 5 \times 10^2$  と  $10^3$  を用いることにする。

### 2.2 セットアップ

シミュレーションのセットアップについて述べる。初期条件を作成するために直径  $D = (1/2)(1 + 1.4^2)(N/\varphi)d$ の円を考え、その中に各粒子を配置する。ここで $\varphi$ は破砕性粉体の充填率であり、今回は

 $\varphi = 0.80$ と設定した。その後、各粒子を膨らませ、 各粒子間のオーバーラップの最大が 10<sup>-6</sup> d 以下にな るまで緩和を行った。緩和を行った後は粒子間の距 離の測定を行い、粒子間の距離が  $r_{ij} \leq (1+u)d_{ij}$ に ある粒子には結合ボンドが生じているとみなし、式 (1) で破壊される結合ボンドを用意した。また、初期 配置による依存性を排除するため、各パラメータの 組み合わせに対して 10 通りの初期配置を用意した。

# 3 結果

本章では、2体衝突、および多体系に剪断を加え た場合のシミュレーション結果についてそれぞれ述 べていく。

### 3.1 2体衝突



図 1: 時刻 (a) t = 0 および (b) 150 d/V にお ける 2 体の破砕性粉体の振る舞い。衝突パラメー タと相対速度はそれぞれ b = 0.6D、 $V = 3.2 \times 10^{-2} d\sqrt{k_n/m}$ である。

この章では2つの破砕性粉体を衝突させるシミュ レーションによって得られた結果について述べる。 相対速度Vおよび衝突パラメータ(接触が始まる前 における相対速度と垂直方向の2粒子間の重心距離)b を変化させた際の2体衝突による破壊の様子の変化 を調べた。2粒子の衝突前および衝突中の典型的な 様子をそれぞれ図1(a)および(b)に示す。図1(b) のように、衝突により破砕性粉体の一部分が変形し、 その後に粒子内の破砕が進行する。

図 2 にこの際の粒子内の結合ボンドの時間発展を示している。衝突前においては、ボンド数は $N_{bond}/N \simeq 1.7$ 程度存在するのに対し、衝突により破砕が進行していくと減少していく。このとき、相対速度Vが大きいほど衝突後のボンド数 $N_{bond}$ は小さくなり、また衝突パラメータbが小さいほど同様に $N_{bond}$ は小さくなる。ここで、 $N_{bond}$ の減少が始まる時刻が異なるが、これはbによって接触が始まる時刻が異なるためである。

さらに、衝突パラメータbを変化させた場合の、



図 2: 各初期速度に対するボンド数の時間変化。こ こで  $V^* \equiv V/(d\sqrt{k_n/m}), t^* \equiv t/\sqrt{m/k_n}$  であ る。ここで、結果は 10 サンプルの平均を示して いる。



図 3: 相対速度に対する破砕する結合の個数の変化。破線はエネルギーのバランスから見積もった 閾値  $V_{\rm c} \sim 1.3 \times 10^{-2} d \sqrt{k/m}$ である。ここで、結 果は 10 サンプルの平均を示している。

衝突の前後における結合ボンド数の差の衝突速度依 存性を図3に示す。ここで、衝突前(後)の結合ボ ンド数を $N_{\text{bond}}^{\text{ini}}(N_{\text{bond}}^{\text{fin}})$ と置いた。図3より、破砕 される結合ボンド数の割合は速度の増加関数である こと、および同じ衝突速度の場合においては衝突パ ラメータの減少関数であることがわかる。また、破 砕割合は  $V_{\rm c} \simeq 1.0 \times 10^{-2} d \sqrt{k/m}$  の閾値を境に大 きく変化している。この Vc については以下の簡単 な議論から説明できる。まず、破砕性粉体の運動エ ネルギーKは、1個の破砕性粉体がN個の粒子か ら構成されるため質量は $M = Nm_i \sim Nm$ となる こと、および破砕性粉体の換算質量が $M_{\rm r} = M/2$ であることから、 $K \sim (1/2)M_{\rm r}V^2$ と見積もること ができる。一方、結合を破壊するためのエネルギー は、ボンド数が $N_{\text{bond}}$ で与えらえることから $U \sim$  $2 \times (1/2) k u^2 d^2 N_{\text{bond}}$ となる。これら二つのエネル ギーが等しいとすると、ボンドを破壊するために必 要な相対速度は  $V_{\rm c} \sim u \sqrt{(4N_{\rm bond}/N)} d \sqrt{k/m}$  と見 積もられる。ここに我々が使用したパラメータの値 および  $N_{
m bond}/N \simeq 1.7$  を代入すると、 $V_{
m c} \sim 1.3 imes$  $10^{-2}d\sqrt{k/m}$ が得られ、図3の閾値と定量的に一致 していることがわかる。

また、衝突の際の (マクロな) はねかえり係数 eの



図 4: 衝突パラメータ b を変化させたときの法線 方向の相対速度  $V_n = V(0) \cdot n(0)$ に対する (a)(マ クロな) はねかえり係数 e および (b) 修正はねか えり係数  $\tilde{e}$  の変化。ここで  $V_n^* \equiv V_n/(d\sqrt{k_n/m})$ であり、図中の破線は構成粒子のはねかえり係数  $e_n = 4.3 \times 10^{-2}$ を示す。ここで、結果は 10 サン プルの平均を示している。

衝突速度および衝突パラメータ依存性についても調 べた (図 4(a) 参照)。衝突による破砕性粉体内部の破 壊による影響で、構成粒子のはねかえり係数 e<sub>n</sub> とは 異なる変化を示す。低速領域においてはマクロなは ねかえり係数は構成粒子のはねかえり係数より大き くなる。これは前者が式 (2) において質量 m を Nm に置き換えることによって得られ、N が大きくなる と後者よりも大きな値を取ることが理解できる。

一方、高速領域においてははねかえり係数は負の 値となる。これは有限の接触時間となることで、粒 子間の方向ベクトルが時間とともに変化しているこ とに起因している [7]。ここで、時間とともに変化す る方向ベクトル n(t)を導入し、さらに衝突開始およ び終了時刻を t = 0 および  $t_c$  と置くことで、修正は ねかえり係数  $\tilde{e}$  を

$$\tilde{e} \equiv -\frac{\boldsymbol{V}(t_{\rm c}) \cdot \boldsymbol{n}(t_{\rm c})}{\boldsymbol{V}(0) \cdot \boldsymbol{n}(0)}$$
(3)

で定義する [7]。ここで V(t) は時刻 t における相対 速度ベクトルである。図 4(b) にこの修正はねかえり 係数の衝突速度依存性を示す。この定義を用いるこ とで、修正されたはねかえり係数は 0 から 1 までの 範囲に収まる。ただし、衝突速度が閾値を超え破砕 が起こる場合、この定義を用いることではねかえり 係数が増大していることに注意する必要がある。

# 3.2 一様剪断下での多粒子系の破砕

次に、破砕性粉体粒子を多数用意し、そこに一様 剪断をかけた際の挙動について調べていく。2.1 章 で述べた通り、破砕性粉体の構成粒子数は 500 個お よび 1000 個とし、それらを 20 個ずつ用意する。そ の系に対し Lees-Edwards 境界条件 [8] を適用する ことで剪断を作用させることにする。



図 5: 剪断率  $\dot{\gamma} = 1.0 \times 10^{-4} \sqrt{k_n/m}$  における (a) 初期および (b) 歪み  $\gamma = 10.0$  での破砕性粉体の振 る舞い。(a) における矢印は剪断の方向を示す。

剪断率により、破砕性が大きく変わる。図5に剪 断率が小さい場合における系の典型的な発展の様子 を示している。これからわかる通り、剪断率が小さ い場合には破砕が生じる (マクロな) 粒子と生じない 粒子が混在する。一方、剪断率が大きくなると破砕 は均等に起こる。



図 6: 無次元化剪断率  $\dot{\gamma}^* = 10^{-2.5}$ 、 $10^{-3.5}$ 、 $10^{-4.5}$ に対する平均破片サイズ  $\langle k \rangle$  と剪断応力  $P_{xy}^*$ の関係。矢印は時間発展の方向を示す。ここで、 $\dot{\gamma}^* \equiv \dot{\gamma} \sqrt{m/k_n}$ 、 $P_{xy}^* \equiv P_{xy}/k_n$ である。

図6に剪断をかけた際の剪断応力と平均破片サイ ズの関係を示す。時間経過によって破砕が進み、平 均破片サイズ  $\langle k \rangle$  が小さくなる。さらに剪断率  $\dot{\gamma}$  が 大きいほど  $\langle k \rangle$  がより小さくなるまで破砕が進むこ とが見て取れる。一方、剪断応力  $P_{xy}$  の値について は、初期を除いてほぼ一定であり、 $\langle k \rangle$  にはほとんど 依存しないことがわかる。これは、剪断応力がある 瞬間に局所的に大きくなるとそこで破砕が発生し、 その結果全体の剪断応力が減少するためであると考 えられる。ここで、 $\dot{\gamma}$  が小さい場合にはほとんど破 砕が起こらないため、 $\langle k \rangle$  がほとんど変化しないこ とに注意が必要である。

# 4 まとめ

本研究では破砕のある粉体のモデル化を行い、そ れを用いてシミュレーションを実行した。その結果、 2体衝突系においては衝突速度に閾値が存在し、その 前後で結合ボンド数やはねかえり係数の衝突速度・ 衝突パラメータ依存性が大きく変わることを明らか にした。また、簡単な解析によりこの閾値を定量的 に再現できることを示した。一方、剪断下での多体 系においては剪断率を変化させると平均破片サイズ は大きく変化するものの、剪断応力はほとんど変化 しないことを明らかにした。

しかしながら多体系において剪断率によって破砕 が局所的に起こる条件などについてはまだ明らかに できていない。これを解決するにあたり、今後は破砕 進行中の各粒子内部の応力状態の解析などが必要で あると思われる。また破砕進行が起こる直前に現れ る何らかの前兆現象などについても調べていきたい。

### 謝辞

本研究は JSPS 科研費 JP20K14428 の助成を受け たものです。

# 参考文献

- C. O'Sullivan, "Particulate Discrete Element Modelling", Routledge, (2017).
- [2] S. Antonyuk, M. Khanal, J. Tomas, S. Heinrich, and L. Mörl, Chem. Eng. Process. 45, 838 (2006).
- [3] D. Li, L. Ngai, and Y. Wong, Rock Mech. Rock Eng. 46, 269 (2013).
- [4] S. Luding, Granul. Matter **20**, 235 (2008).
- [5] Y. Wang, F. Alonso-Marroquin, S. Xue, and J. Xie, Particuology 18, 35 (2015), 23, 49 (2015).
- [6] Y. Wang, S. Abe, S. Latham, and P. Mora, Pure Appl. Geophys. 163, 1769 (2006).
- K. Saitoh, A. Bodrova, H. Hayakawa, and N. V. Brilliantov, Phys. Rev. Lett. 105, 238001 (2010).
- [8] A. W. Lees and S. F. Edwards, J. Phys. C: Solid State Phys. 5, 1921 (1972).

# 混雑を考慮した鉄道通勤行動の mean field game モデル

石井 諒太郎<sup>1</sup>, 渡辺 樹<sup>1</sup>, 豊泉 洋<sup>1</sup>

1 早稲田大学大学院 基幹理工学研究科 数学応用数理専攻

### 概要

鉄道路線で運行されている2種類の列車で異なる賃率を設定したときの通勤者の行動を多数の他の 通勤者とのゲームとして捉え, mean field game (MFG)の観点からモデル化を行い, Mean Field Equation (MFE) 系として定式化できることを示した.また,先行研究と本稿のそれぞれの MFE で 考えられている空間および時間に関する相違点を述べる.

# The Mean Field Game Model of the Rail Commuter Behavior Allowing for Congestions

Ryotaro Ishii<sup>1</sup>, Itsuki Watanabe<sup>1</sup> and Hiroshi Toyoizumi<sup>1</sup>

<sup>1</sup> Department of Pure and Applied Mathematics, Graduate School of Fundamental Science and Engineering, Waseda University

### Abstract

We constructed the commuter behavior model from a viewpoint of the mean field game (MFG) and obtained the mean field equation (MFE) describing his behavior, considering his behavior as a game with a large number of other commuters in a railway in which two types of trains run. Moreover, we claim the difference between the MFE in this paper and in a previous research about space and time.

# 1 はじめに

本研究は都市圏の鉄道路線における混雑を緩和するための運賃システムを考えることを目的としている. 都市圏における鉄道路線の混雑は長年問題視されている. 混雑により列車の乗降時間の延長が引き起こされ, 列車の定時運行の障害の一因になっている. 平成 30 年度の東京圏における 10 分未満の遅延の原因のうち 48.3% は乗降時間超過である [1]. 混雑を緩和させることにより,より安定した列車の定時運行を可能になる と考えられる.

本稿では都市と郊外を結ぶ2種類の列車が運行している鉄道路線において,2種類の列車の単位距離あた りの賃率が異なるときの通勤者の行動を多数の他の通勤者とのゲームとして捉え, mean field game (MFG) [2] の観点からモデル化し, mean field equation (MFE) 系として定式化できることを示した.また, [2] と 本稿のそれぞれの MFE で考えられている空間および時間に関する相違点を述べる.

# 2 Mean Field Game

mean field game [2] の理論はシステム全体に及ぼす作用の小さいプレイヤーが多数存在するゲームの解析 に用いられる. [2] で考えられている 1 階の MFE,

$$\begin{cases} -\frac{\partial u}{\partial t}(x,t) = \inf_{\alpha(x,t)} \left\{ \frac{1}{2} |\alpha(x,t)|^2 + F(x,m(t)) + Du(x,t)\alpha(x,t) \right\}, & (x,t) \in \mathbb{R}^d \times (0,T) \\ \frac{\partial m}{\partial t}(x,t) + \operatorname{div}(m(x,t)\alpha^*(x,t)) = 0, & (x,t) \in \mathbb{R}^d \times (0,T) \\ m(x,0) = m_0(x), u(x,T) = G(x,m(T)), & x \in \mathbb{R}^d \end{cases}$$
(1)

において,  $\alpha^*$  は (1) の第 1 式の右辺の下限を達成する  $\alpha$ , m(t) は時刻  $t \in [0,T]$  における他のプレイヤーの 分布, m(x,t) は時刻  $t \in [0,T]$  における位置  $x \in \mathbb{R}^d$  の他のプレイヤーの密度を表わす. (1) の解 (u,m) の うち, u(x,t) は時刻  $t \in [0,T]$ , 位置  $x \in \mathbb{R}^d$  におけるプレイヤーの価値関数で,

$$u(x,t) = \inf_{\alpha} \int_{t}^{T} \left( \frac{1}{2} |\alpha(x(s),s)|^{2} + F(x(s),m(s)) \right) \, ds + G(x(T),m(T)) \tag{2}$$

をみたす.ただし,  $\alpha(x,t)$  は時刻  $t \in [0,T]$  における地点  $x \in [0,1]$  でのプレイヤーの速度,  $x(t) = x + \int_0^t \alpha(x(s),s) ds$  は時刻  $t \in [0,T]$  におけるプレイヤーの位置である.また, (2) の右辺の下限を達成する プレイヤーの速度は  $\alpha^*$  で,  $\alpha^* = -Du$  となる.このシステムは弱解,粘性解,不動点定理などの手法 [2,3] により,解の性質が調べられている. F,G がプレイヤーの位置 x と他のプレイヤーの分布について連続かつ 任意の分布 m に対して  $C^2$  ノルムで有限であることと,他のプレイヤーの初期分布  $m_0$  について Lebesgue 測 度に関して絶対連続,有界でコンパクトな台をもつことを仮定したときに (1) の解の存在が示されている ([2] Theorem 4.1).

# 3 通勤者の行動モデル

都心と郊外を結ぶ鉄道路線における通勤者の行動を考える.鉄道路線の運行区間を [0,1] とし,運行 区間内では各駅停車,急行の2種類の列車が運行しているとする.各駅停車,急行のそれぞれの速さを  $v_l, v_e$  (0 <  $v_l$  <  $v_e$ ) とする.速度 v に対する単位距離あたりの賃率を f(v) とする.このとき,各駅停車,急 行に乗車するときの単位距離あたりの賃率はそれぞれ  $f(v_l), f(v_e)$  と表される.

通勤者は時刻  $t_0 \in [0,\infty)$  で地点  $x_0 \in [0,1]$  から通勤を始め、地点 1 へ向かうものする.通勤者の地点 1 への理想到着時刻を  $t^* \in [0,\infty)$  とする.通勤者は各時刻、各地点において、次の 3 つの戦術、

- (a) 速度0で移動する(移動しない)
- (b) 速度 v<sub>l</sub> で移動する(各駅停車で移動する)
- (c) 速度 v<sub>e</sub> で移動する(急行で移動する)

のいずれかを選択するとする.ただし,地点1において通勤者は戦術 (a) のみを選択するとする.また,戦術の変更にかかる時間および戦術の変更によって生じるコストはいずれも0とする.

通勤者の行動を関数  $\alpha$ :  $[0,1] \times [t_0,\infty) \to \mathbb{R}$  で表し,  $\alpha(x,t)$ を時刻  $t \in [t_0,\infty)$ における地点  $x \in [0,1]$ での通勤者の移動速度とする.通勤者の移動速度  $\alpha(x,t)$  は t について右連続とする.通勤者は戦術 (a), (b), (c) のいずれかを選択するので,通勤者の行動  $\alpha$  の値域は  $\{0, v_l, v_e\}$  の部分集合である.通勤者が 行動  $\alpha$ :  $[0,1] \times [t_0,\infty) \to \mathbb{R}$  をとったときの時刻  $t \in [t_0,\infty)$ における通勤者の位置を x(t)とすると,  $x(t) = x_0 + \int_{t_0}^t \alpha(x(s),s) ds$ と表される.また,行動  $\alpha$  をとったときの通勤者の地点 1 への初到達時間  $A(\alpha)$ は,  $A(\alpha) = \inf\{ t \in [t_0,\infty) \mid x(t) = 1 \}$ で表される.図 1 では通勤者は時刻  $t_0$  から時刻  $t_1$  は急行で移動 し,時刻  $t_1$  から時刻  $t_2$  は移動せず,時刻  $t_2$  から時刻 t は各駅停車で移動している.時刻 t において通勤者 は  $\alpha(x(t), t) \in \{0, v_l, v_e\}$  を選択する.



図 1:鉄道路線の運行区間 [0,1] における通勤者の動きの例

時刻  $t \in [0,\infty)$  における地点  $x \in [0,1]$  の各駅停車, 急行に乗車する他の通勤者の密度を  $m_l(x,t)$ ,  $m_e(x,t)$ , 移動しない他の通勤者の密度を  $m_s(x,t)$  とする.時刻  $t \in [0,\infty)$  における地点  $x \in [0,1]$  の他の通勤者全体の密度を m(x,t) とすると,

$$m(x,t) = m_l(x,t) + m_e(x,t) + m_s(x,t)$$
(3)

が成立する.また、時刻0における他の通勤者全体の密度をmoとする.

### 3.1 通勤コスト

通勤者が行動  $\alpha$  をとるときの通勤コスト  $C(\alpha)$  を考える.本稿では通勤者の通勤コストを地点 1 までの 運賃,混雑コスト,延着コスト,早着コストの4種類のコストの和として考える.地点 1 までの運賃は時刻  $t \in [t_0, \infty)$  における瞬間の賃率は  $f(\alpha(x(t), t))\alpha(x(t), t)$  となることから, $\int_{t_0}^{\infty} f(\alpha(x(t), t))\alpha(x(t), t) dt$  で表 される.混雑コストは通勤者の位置,通勤者の選択した戦術,各駅停車,急行にそれぞれ乗車する他の通勤者の 密度に依存するものとし, $\int_{t_0}^{\infty} F(x(t), m_l(x(t), t), m_e(x(t), t), \alpha(x(t), t)) dt$  とおく. 延着コストおよび早着コ ストは,単位時間あたりにかかるコストをc > 0 とすると,それぞれ $c \cdot \max\{A(\alpha) - t^*, 0\}, c \cdot \max\{t^* - A(\alpha), 0\}$ と表される.以上から本稿における通勤コスト  $C(\alpha)$  は,

$$C(\alpha) = \int_{t_0}^{\infty} \left( f(\alpha(x(t), t)) \alpha(x(t), t) + F(x(t), m_l(x(t), t), m_e(x(t), t), \alpha(x(t), t)) \right) dt + c |A(\alpha) - t^*|$$
(4)

と表される.

### 4 通勤者の行動における MFE

通勤者の行動における MFE を考える.鉄道路線の運行区間において全通勤者は共通の理想到着時刻  $t^* \in [0, \infty)$ をもつとする.また,時刻0における他の通勤者全体の密度を $m_0$ とする.1人の通勤者が時刻  $t \in [0, \infty)$ で地点 $x \in [0, 1]$ から通勤を始めるとする.時刻tで地点xからその後最適行動をとった場合の残 余コスト関数を,

$$u(x,t) = \inf_{\alpha} \left\{ \int_{t}^{\infty} (f(\alpha(x(s),s))\alpha(x(s),s) + F(x(s),m_{l}(x(s),s),m_{e}(x(s),s),\alpha(x(s),s))) \, ds + c|A(\alpha) - t^{*}| \right\}$$
(5)

とおく. (5)の右辺の下限は通勤者が最適行動をとることを表わしており,下限を達成する行動を α\* とおく. (5)より,

$$\frac{\partial u}{\partial t}(x,t) = \min_{\alpha(x,t) \in \{0,v_l,v_e\}} \left\{ \left( f(\alpha(x,t)) + \frac{\partial u}{\partial x}(x,t) \right) \alpha(x,t) + F(x,m_l(x,t),m_e(x,t),\alpha(x,t)) \right\}$$
(6)

が得られる. (6) は (1) の第 1 式に相当する. 他の通勤者が最適行動  $\alpha^*$  で行動するとき, 各駅停車, 急行に乗車 する他の通勤者の密度  $m_l^*(x,t), m_e^*(x,t)$  はそれぞれ  $m_l^*(x,t) = m(x,t) \mathbbm{1}_{\{\alpha^*(x,t)=v_l\}}(\alpha^*(x,t)), m_e^*(x,t) =$  $m(x,t) \mathbbm{1}_{\{\alpha^*(x,t)=v_e\}}(\alpha^*(x,t)),$ 移動しない他の通勤者の密度  $m_s^*(x,t)$  は  $m_s^*(x,t) = m(x,t) \mathbbm{1}_{\{\alpha^*(x,t)=0\}}(\alpha^*(x,t))$ となる. 時刻  $t \in [0,\infty)$  から微小時間  $\Delta t$  が経過したときの他の通勤者全体の密度は, 他の通勤者が最適行 動  $\alpha^*$  で行動すれば,

$$m(x, t + \Delta t) = m_l^*(x - v_l \Delta t, t) + m_e^*(x - v_e \Delta t, t) + m_s^*(x, t)$$
(7)

となり、(3)、(7)を用いると、輸送方程式として、

$$\frac{\partial m}{\partial t}(x,t) + v_l \frac{\partial m_l^*}{\partial x}(x,t) + v_e \frac{\partial m_e^*}{\partial x}(x,t) = 0$$
(8)

が得られる. (8) は (1) の第 2 式に相当する. (6), (8) および時刻 0 における他の通勤者の密度 m<sub>0</sub> から,次の MFE,

$$\begin{cases} -\frac{\partial u}{\partial t}(x,t) = \min_{\alpha(x,t) \in \{0,v_l,v_e\}} \left\{ \left( f(\alpha(x,t)) + \frac{\partial u}{\partial x}(x,t) \right) \alpha(x,t) + F(x,m_l(x,t),m_e(x,t),\alpha(x,t)) \right\}, & (x,t) \in [0,1] \times [0,\infty) \\ \frac{\partial m}{\partial t}(x,t) + v_l \frac{\partial m_l^*}{\partial x}(x,t) + v_e \frac{\partial m_e^*}{\partial x}(x,t) = 0, & (x,t) \in [0,1] \times [0,\infty) \\ m(x,0) = m_0(x), & x \in [0,1] \end{cases}$$

$$(9)$$

が得られる.(1)においてプレイヤーは有限の期間 [0,T]において非有界な空間  $\mathbb{R}^d$ 上を移動するのに対し, (9)ではプレイヤーである通勤者は無限の期間  $[0,\infty)$ で有界な区間 [0,1]上を移動している.また,(9)では 無限の期間での通勤者の行動を考えているので終端コストは考えられていない.

## 5 まとめ

通勤者の行動について MFG の観点からモデル化し, MFE (9) が得られた.また, MFE (1) と (9) で考 えられている空間および時間に関する相違点を述べた.本稿では通勤コストを考えるときに,混雑コストに おいて関数 F に具体的な関数を与えておらず,延着コストおよび早着コストの単位時間あたりにかかるコス トをいずれも c としている.今後の課題として関数 F と延着コスト,早着コストの単位時間あたりのコスト について考える必要がある.また,混雑を緩和するための運賃システムを考えるにあたり,単位距離あたり の賃率を定める関数 f によって通勤者の行動および通勤者の密度がどのように変化するかを調べ,混雑が緩 和される運賃システムの構築を目指す.

# 参考文献

- [1] 国土交通省. 東京圏の鉄道路線の遅延「見える化」(平成 30 年度). 2020. URL: https://www.mlit. go.jp/report/press/content/001328948.pdf
- [2] Pierre Cardaliaguet. Notes on Mean Field Games (from P.-L. Lions' lectures at Collège de France). Technical report, 2012.
- [3] Shigeaki Koike. A Beginner's Guide to the Theory of Viscosity Solutions (MSJ Memoirs 13, Mathematical Society of Japan). 2004.

# 動的モード分解を用いた集団運動変化点の検出

# 猪股能成<sup>1</sup>, 高見利也<sup>2</sup>

<sup>1</sup> 大分大学大学院 工学研究科 <sup>2</sup> 大分大学 理工学部

#### 概要

動的モード分解 (DMD) による時系列の再構成誤差に着目した Time-Shifted DMD(TS-DMS) は, 群れの集団運動分析を目的とした新しい手法である.この方法により群れの運動状態の変化を検 知できるが,異なる種類の運動が共存している場合や微小な変化に対する結果が不明だったため, 本研究では、シンプルな集団運動に適用して分析を実施した.その結果,たとえ少数であっても 不規則な運動をする粒子の存在を検出できることがわかった.また,検出は誤差の相対的な比較 によることから,状況によっては,数値表現の限界まで不連続性を検出可能であることがわかっ た.これらにより,TS-DMD が集団の運動状態の微妙な変化まで検出できることを確認するこ とができた.

# Detecting Transition of Collective Motion by Dynamic Mode Decomposition

Yoshinari Inomata<sup>1</sup>, Toshiya Takami<sup>2</sup>

<sup>1</sup> Graduate School of Engineering, Oita University

 $^{2}$  Faculty of Science and Technology, Oita University

### Abstract

Time-Shifted (TS) Dynamic Mode Decomposition (DMD), a new method to analyze collective motion, is introduced by paying attention to reproduction error by DMD. Since it is unknown how this analysis to detect transition of motion behaves for mixed-collective motion or faint change of the motion, analyses for simple collective motion were conducted in this study. As a result, it was shown that TS-DMD recognizes irregular motion by however small number of particles. In addition, it is also shown that it works up to the limit of the number representation. With these analyses, it was confirmed that TS-DMD detects a slight change of collective motion.

# 1 はじめに

人工知能技術の1つである群知能は,生物などの 群れにインスパイアされたアルゴリズムの総称 [1] である.特徴として,中心的な役割,いわゆるリー ダーがいなくても,群れとして高度な機能を有する ことや,群れを構成する各個体の挙動がシンプルな ルールによって決まるなどが挙げられる.映像作品 等で鳥や魚の群れを再現する際も,個々の挙動はシ ンプルなルールに従わせることが多く,群れのシミュ レーションモデルとして有名な Boid モデル [2] は,3 つの局所的な相互作用によって群れらしい振る舞い を再現している.また,各々の相互作用のパラメー タを変更することによって異なる群れの振る舞いが 発現することが知られている [3].

Boid モデルのような群れのシミュレーションによっ て発現する運動パターンを分類する研究は既に行わ



図 1: TS-DMD のイメージ ([7] より引用)

れている [4, 5, 6]. 特に藤井氏らによる研究 [4] では, オーダーパラメータのような事前情報を用いず, 動的 モード分解 (Dynamic Mode Decomposition, DMD) を使うことにより、運動パターンを分類した.しか し、この研究では、ある運動パターンから別の運動 パターンに遷移していくことは想定されていないた め、DMD を用いて運動の遷移を検知する手法とし て, 我々は Time-Shifted DMD(TS-DMD)を提案し た[7]. この手法では、図1のように、波形にピーク が現れるタイミングと運動パターンが変化するタイ ミングが一致するようなグラフを得ることができる (図中の(a)~(c)はそれぞれ別の運動パターンが観測 された区間を示している). この TS-DMD は,実験 を重ねていったことで発見的に提案した手法となっ ており、どのようなデータを TS-DMD に適用する とどのような出力が得られるのかを完全に理解でき ていない. そのため、本研究では、比較的シンプル なシミュレーションデータを TS-DMD に適用した 結果を確認、比較をすることで、この手法の理解を 深め, 今後の活用先を検討したい.

#### DMD 2

DMDは、流体力学の分野から提案され[8]、固有直 交分解と高速フーリエ変換を組み合わせた手法 [9] で ある. 解析をしたい時系列データ行列を X とし, X の中には各時刻のデータベクトル $x_t(t=1,2,\cdots,T)$ が $(x_1, x_2, \cdots, x_T)$ のように並べられているとする (各データベクトルは N 次元のベクトルとする). あ る時刻 t のデータが,式(1)のように,前の時刻 t-1 における関数 f によって求められると仮定し、この fを時系列全体に拡張した関数 F を求める.

$$\boldsymbol{x}_t = f(\boldsymbol{x}_{t-1}) \tag{1}$$

 $F を 2 つの行列, Y = (x_1, x_2, \cdots, x_{T-1}) \ge Y' =$  $(x_2, x_3, \cdots, x_T)$ を用いて表すと、Y' = FYとな して局所的に計算するため、時系列データ内で特に



るが、これは、 $F = Y'Y^{\dagger}$ と変形できる、 $Y^{\dagger}$ は Y の疑似逆行列で、特異値分解を利用すれば、Y<sup>†</sup> =  $V\Sigma^{-1}U^*$  と表すことができ,  $F = Y'V\Sigma^{-1}U^*$  と なる  $(U \in \mathbb{C}^{N \times M}, \Sigma \in \mathbb{C}^{M \times M}, V \in \mathbb{C}^{T-1 \times M},$  $M = \min(N, T - 1), U^*$ はUの随伴行列).この行 列 F から, 固有値  $\Lambda$  と, 固有ベクトル W を求め, 動的モード  $\Phi = Y'V\Sigma^{-1}W$ を得る.

さらに, 求めた動的モードから元のデータを再構 成することができ、ある時刻tのデータベクトル $x_t$ は,以下の式で求められる.

$$\boldsymbol{x}_t = \Phi \Lambda^t \Phi^\dagger \boldsymbol{x}_1 \tag{2}$$

#### Time-Shifted DMD 3

DMD は本来,時系列データ内の線形な時間発展 をモードとして分解するため、データ内に非線形な 変化が含まれるデータでは、上手くモードを求めら れず、再構成した時系列データと元データとの誤差 が大きくなる. 我々が提案している TS-DMD は、こ の誤差に着目した手法になっており、具体的な処理 の流れを図2を基に説明する.

DMD の説明と同様に1~T までの時間を含む時 系列データ  $X = (x_1, x_2, \cdots, x_T)$  を入力とする. まず、1回目の計算として、Xのうち、 $x_1 \sim x_d$ の 部分のみを切り取り, DMD を実行する. そして, 求めたモードから再構成した時系列データ X' =  $(x'_1, x'_2, \cdots, x'_n)$ との誤差  $E_1$ を計算する. x が N 次 元のベクトルで、 $\boldsymbol{x}_d = (x_{(1,d)}, x_{(2,d)}, \cdots, x_{(N,d)})^T$ ,  $m{x}_{d}' = (x_{(1,d)}', x_{(2,d)}', \cdots, x_{(N,d)}')^{T}$ と表した場合, $E_{1}$ は以下のように求める.

$$E_1 = \max\{||\boldsymbol{x}_{(n,d)} - \boldsymbol{x}'_{(n,d)}||, n = 1, 2, \cdots, N\} (3)$$

次に時刻を1つスライドさせ、 $x_2 \sim x_{d+1}$ を切り取 り,同様にして誤差  $E_2$ を計算,その次が  $x_3 \sim x_{d+2}$ のデータで E<sub>3</sub>を計算.このように誤差の計算をデー タの切り取りが最後に到達するまで行う.

TS-DMD は本来の DMD と比べ,時間方向に対



図 3: シミュレーションのキャプチャ (上部の数字 はシミュレーション内の時刻)

変化が大きい時間帯でのみ誤差が大きくなる.これ をグラフとして可視化すると、その部分がピークの ように強調されるため、データが不連続に変化する 時刻を視認しやすくなる.

# 4 実験

## 4.1 実験データ

今実験では,群れのシミュレーションデータを数 パターン用意し,それぞれを TS-DMD に適用した 結果を比較する.

用意するシミュレーションデータとしては,定常 的かつ周期的な集団運動としてパターン (1) を作成 した.また,ほとんどの個体が集団運動をしている 中,集団に属さない形で自由に動いている個体が存 在している例としてパターン (2),集団の概形はそ のままではあるが個々の速度が突然変化する例とし てパターン (3)を作成した.

パターン(1)は、図3(A)のように粒子を環状に配 置し、全ての粒子を同じ角速度で反時計回りに移動 させる.粒子数は64体、各々の粒子はおよそ100ス テップで1周し、元の位置へ戻る.パターン(2)で は、パターン(1)のシミュレーションにランダムな動 きをする粒子(図3(A)の赤点)を1体追加した.パ ターン(3)は、粒子の初期位置と初期速度はパター ン(1)と同じだが、300ステップごとに粒子の角速 度をランダムに変更する.したがって、シミュレー ションの始めは図3(A)と同じような粒子の配置を しているが、角速度が変更されると、図3(B)のよう に前後の粒子との間隔が一定でなくなる.いずれの パターンもシミュレーションの実行時間は2000ス テップであるため、パターン(3)では角速度の変更 が計6回行われる.



### 4.2 実験結果

パターン (1)~(3) のデータに対し,前節で述べた データの切り取り幅  $d \ge 100$  として, TS-DMD を 実行する.図 4~6 は,その結果である.

図4は、パターン(1)のデータに対する TS-DMD の結果で、横軸がステップ数 t、縦軸が誤差  $E_t$  であ る.図5はパターン(1)の結果に加え、パターン(2) のデータでの TS-DMD の結果を示している.赤線 がパターン(2)の結果で、黒線がパターン(1)の結 果である.また、図6はパターン(3)の結果(緑線) を示したものである.さらに、パターン(1)と(2)に ついては、最も TS-DMD の誤差が大きかった時刻 での元データと再構成データの重ね合わせた図を図 7 に示す.赤点が元データ、緑点が再構成データを 表しているが、赤点の上に緑点をプロットしたため、 点が重なると再構成データの方しか確認出来ない.





図 7: 元データと再構成データの重ね合わせ (上部 の数字は TS-DMD のステップ数 *t*)

### 4.3 考察

パターン (1) の結果は,縦軸のスケールが 1e-13で,データの重ね合わせ (図 7・左) を見ても,一致 しているように見えるが, $t = 250 \sim 500$  のところで 誤差がピークのように大きくなった.これは元のシ ミュレーションデータを作成するときに桁落ちが生 じ,粒子の位置がわずかにずれてしまったことを検 知したものである.

パターン (2) に関しては, パターン (1) と比べ, 誤 差が非常に大きくなっていることが分かる.しかし, 全ての粒子で大きな誤差が生じているのではなく, 図7・右のように, ランダムに動いていた粒子に限 定して大きな誤差が生じた.これは, 式 (3) で各々 の要素での誤差の最大値を採用したことにより, ラ ンダムに動いていた粒子の誤差が全体の誤差として 採用されていたためと考えられる.

また, パターン (3) では, ピークのように誤差が 大きくなっている部分が 6 か所見られ, 1 つ目のピー クは  $E_{250}$  付近で, その後は概ね 300 ステップごとに 現れている. パターン (3) は 300 ステップごとに角 速度を変更したため, 1 度目の速度変更が TS-DMD で切り取られるのは  $E_{201} \sim E_{300}$  となる. 1 つ目の ピークが現れる  $E_{250}$  付近は,  $E_{201}$  と  $E_{300}$  の中間で あるため, 粒子の速度が変わるタイミングとピーク の現れるタイミングが一致したと言える.

# 5 まとめ

本研究では、魚の群れのような集団運動の状態が 変化していることを検知できる手法として提案した TS-DMD に対し、よりシンプルな集団運動データ を適用した場合に得られる結果の確認、および比較 を行った.実験では、環状に配置した粒子群が周期 的に動いているようなシミュレーションのデータに 対し、TS-DMD の誤差が限りなくゼロに近づくこと が確認できた.また,粒子の速度を変更し,全体の 運動に変化を与えた場合,その変化が与えられるタ イミングを確認できた.一方で,誤差を計算する際, 各々の要素における誤差のうち最大のものを採用し ていたことによって,ランダムな動きをする粒子を 1体加えただけで結果のグラフが大きく変動してし まった.そのため,最大値だけでなく,平均値や中 間値など,誤差の散らばり度合いを確認できるよう にする必要があると考える.

今後の展望としては, 誤差の散らばり度合いの確 認に加え, TS-DMD での誤差が大きくなる, または 小さくなる要因がシミュレーション結果と比較しな くても分かるようにすることが考えられる. これは, 本手法を群知能へ適用する場合, 粒子の移動する空 間が4次元以上になる可能性があり, 粒子のデータを 直接可視化できないためである. 現在は, TS-DMD の計算過程で求められる動的モードを効果的に可視 化する手法などを検討している.

**謝辞** 本研究は JSPS 科研費 JP18K11338 の助成を 受けたものです.

# 参考文献

- D. Martens, B. Baesens, T. Fawcett, Machine Learning, Vol. 82, pp.1-42 (2011).
- [2] Craig W. Reynolds, Computer Graphics, Vol.21, No.4, pp.25-34 (1987).
- [3] I. D. Couzin *et al.*, Journal of Theoretical Biology, Vol.218, pp.1-11 (2002).
- [4] K. Fujii, T. Kawasaki, Y. Inaba, Y. Kawahara, PLOS Computational Biology 14(11): e1006545 (2018).
- [5] Matthew Berger, Lee M. Seversky, Daniel S. Brown, 2016 IEEE International Conference on Robotics and Automation (ICRA), pp.5328–5335 (2016).
- [6] Tunstrøm K, et al., PLOS Computational Biology 9(2): e1002915 (2013).
- [7] Y. Inomata, T. Takami, Traffic and Granular Flow 2019, pp.373-379 (2020).
- [8] Peter Schimid, Journal of Fluid Mechanics, 656, pp.5-28 (2010).
- [9] 土肥宏太, 武石直也, 矢入健久, 堀 浩一, 人工知能 学会全国大会(第 32 回) 論文集, 1P2-02 (2018).

# 交通流数理研究会 投稿規程

第14回より論文の査読制を導入しています。そのぶん〆切が早くなりますのでご 注意ください。査読制の趣旨は、お寄せいただいている質の高い論文をオーサライズ し、特に若手の方への業績となるように本シンポジウムが貢献したい、というもので す。

講演申し込みの方は、従来どおり、まず論文投稿という形で申し込んでいただきま す。投稿された論文は査読後、その採択を決定した論文について、講演していただき ます。奮って申し込みください。

### 1. 査読

本論文集に掲載される論文は、査読を経る。投稿者は、シンポジウム開催前の指定 された期日までに投稿する.期限までに投稿された論文は、査読者の報告に基づいて 論文集編集委員会において採否が決定される。

### 2. 投稿手続き

- ・投稿論文の形式(A4,最大4ページ以内)で、日本語または英語で記述する。
- ・投稿原稿フォーマットは、原則として当研究会で用意した LaTeX スタイルファイ ルを使用する。 そのまま写真製版できる PDF ファイルを email によりエディタ に送付する。ただし WORD ファイルを用いる場合は当研究会配布のスタイルファ イルの体裁にできる限り合わせること。
- ・送り先: エディタ(毎年の開催案内、Webに掲載する。)
- ・なお、メールの本文に、著者、著者所属、論文タイトルを記入してください。
- ・採否にかかわらず原稿は返却しない。
- 修正を要請された原稿は、指定期間内に改訂しなければならない。
- ・投稿論文の論文集を講演集として、シンポジウム開催時に配布する。

### 3. 掲載料·別刷

掲載科は無料とする。別刷は用意しない。

4. 著作権

投稿論文の著作権は著者にある。論文は、印刷形式及び電子的形式での配布を、交 通流数理研究会に許諾されたものとして、取り扱う。論文集掲載記事内容の責任は著 者が負うものとする。 "Detecting Transition of Collective Motion by Dynamic Mode Decomposition"......75 Yoshinari Inomata, Toshiya Takami

| "Leader-guiding collective cell rotation"                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Katsuyoshi Matsushita, Sunsuke Yabunaka, Hidenori Hashimura, Hidekazu Kuwayama, and Koichi Fujimoto                                                                                 |
| "Formularization of entropy and detection of metastable states using mutual information in one-<br>dimensional traffic flow"43<br>Ayako Miura, Akiyasu Tomoeda, Katsuhiro Nishinari |
| "Simulation on Pedestrian Flow Composed of Three Types of Agents Walking at Different Speeds<br>on Two Lanes"                                                                       |
| Takahiro Aoki, Akihiro Fujita, Daichi Yanagisawa, Katsuhiro Nishinari                                                                                                               |
| "Relationship among integrable systems related to the asymmetric simple exclusion process"                                                                                          |
| Yuki Ishiguro, Jun Sato, Katsuhiro Nishinari                                                                                                                                        |
| "A model of camphor-type self-driven particle"                                                                                                                                      |
| "Counter flow of robots based on non-linear sensorymotor mapping – Dependence on the course<br>width of transition to one-direction flow and flow rate –"                           |
| "Open Billiard Model of Ion Channels"63<br>Naoya Nakane, Syuji Miyazaki                                                                                                             |
| "Simulation of two-dimensional crushable granular materials"                                                                                                                        |
|                                                                                                                                                                                     |

"The Mean Field Game Model of the Rail Commuter Behavior Allowing for Congestions"...71 Ryotaro Ishii, Itsuki Watanabe and Hiroshi Toyoizumi

# Contents

| "A Traffic Jam Model of Biological Evolution and Species Abundance Distribution"1                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kei Tokita, Jun Sato                                                                                                                                                                  |
| "The effect of inflow rate and conflict around the exit on evacuation efficiency"                                                                                                     |
| "Fundamental diagrams for heterogeneous traffic and their applications"                                                                                                               |
| "Mathematical model analysis for COVID-19"13<br>Hisashi Inaba                                                                                                                         |
| "Analysis on dynamic vaccination to immediately confine an epidemic spreading and to<br>simultaneously minimize the social cost"                                                      |
| "Influence from different definition of 'transmission rate' for SIR process on final epidemic size"<br>                                                                               |
| "Estimation of human contact rate from the scaling relation between the effective reproduction<br>number of COVID-19 and the size of active crowd in Tokyo area"23<br>Takashi Shimada |
| "The relationship between the spread of COVID-19 and the number of people around major<br>stations in Osaka area"                                                                     |
| "Reduction of Facing Duration by Restricting Circling Direction"                                                                                                                      |
| "Spatial pattern formation of ambush predators in a multi-layered model"                                                                                                              |
|                                                                                                                                                                                       |

シンポジウムについてのお問い合わせは、下記までお願いします。

# 交通流数理研究会

世話人: 杉山雄規

〒464-8601 名古屋市千種区不老町 名古屋大学 大学院情報学研究科 複雑系科学専攻 多自由度システム講座 内

Email: sugiyama@phys.cs.is.nagoya-u.ac.jp

Web: http://traffic.phys.cs.is.nagoya-u.ac.jp/~mstf/