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Abstract

Entropy is a useful property that can express both macro and micro states of Newtonian par-
ticles. However, in previous research studies, researchers did not fully determine how entropy
can be defined for self-driven particles that do not satisfy Newton’s laws. In this study, we re-
define the entropy and mutual information in one-dimensional traffic flow from the information
theoretical perspective. Moreover, we used the mutual information to detect a metastable state

by calculating GPS data from three following vehicles on a real expressway to demonstrate the

practical application of the formularized mutual information.

1 Introduction

Entropy is defined both from a macro perspec-
tive, such as thermodynamics and fluid dynamics,
and a micro perspective, such as statistical me-
chanics and information theory. Therefore, en-
tropy is a useful property that can express both
the macro and micro states of Newtonian parti-

cles. However, the self-driven particles do not sat-

isfy Newton’s first and third laws of motion. In
contrast to the usefulness of entropy to define both
the macro and micro states of Newtonian parti-
cles, researchers are yet to fully determine how en-
tropy can be defined for the non-Newtonian self-
driven particles. For instance, Kerner & Konhauser
[1] and Reiss et al. [2] performed thermodynamic

studies of vehicles that are typical examples of self-
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Fig.1: The schematic diagram of the relation
between X, P(X = X;), D;, L, and vehicles

Kerner & Konhauser defined

the traffic temperature and pressure in terms of

driven particles [3].

the correspondence between their hydrodynamic
models and the Navier—Stokes equation. In addi-
tion, Reiss et al. [2] performed further study on
one-dimensional traffic flow using thermodynamics
to define traffic temperature and pressure. They
mentioned entropy but considered that it was not
an appropriate property to represent the uncer-
tainty in traffic flows. Therefore, explaining the
entropy of vehicular traffic, which is described both
by macro- and micro-scale models [3], is a notable
challenge.

In this study, we begin with Iwasaki and
Sadakata’s definition of entropy [4].

n
S() = = 3_ P(X = X)) log, P(X = X,). (1)
i=1

where n is the number of vehicles, X is a discrete
random variable, X; is the i-th possible value of
X, and P(X = X;) is a probability distribution
function. Note that X; corresponds to the situa-
tion when the headway of the i-th vehicle becomes
D; and P(X = X;) = D¢ where L is the length
of the road. The schematic of the relation between
X, P(X = X;), D;, L, and vehicles is shown in
Fig.1. The definition in Eq. (1) is analogous to
the formula of entropy commonly used in informa-
tion theory with the assumption that the headway
between the vehicles is a mutually isolated, inde-
pendent event. Entropy formularized as S(X) rep-
resents the variation in the locations of the vehi-
cles. S(X) is maximum when the headway con-
sists of equally spaced intervals and the vehicles

are widely scattered on the road, while S(X) is

minimum when all the vehicles form a single clus-
ter with the minimum intervals. However, they
did not examine the velocity variation of vehicles
in traffic flow. In this study, we advance the pre-
vious research, which focused on traffic low from
information theory, by defining the new entropy in

traffic flow.

2 A New Formulation of En-
tropy in 1D Traffic Flow

We discretize a random variable Y for the veloc-
ity, and we assume the possible values of Y into
three values Y7, Y5, and Y3 corresponding to situ-
ations when the velocity is 0, between 0 and max-
imum, and maximum, respectively. Although it is
possible to discretize Y in further detail because
measured data show that the velocity changes con-
tinuously, we categorized Y into three values for
the sake of simplicity.

For a fixed length of the road, the joint distri-
bution P(X = X,;,Y = Yj;) can be formularized
between the random variables X and Y as listed
in Tables 1 and 2. (X;,Y7) occurred when the
headway of i-th vehicle was D; and the velocity
of vehicle ¢ was 0. This situation reflected that the
headway of the vehicle was D, + Dy in terms of
the length of the vehicle D, and the inter-vehicle
gap D, as the vehicle came to rest. (X;,Ya2) oc-
curred when the headway of i-th vehicle was D; and
the velocity of vehicle i was between 0 and max-
imum. It indicated that the headway was longer
than D, + D, but shorter than D, + Ds + D,,
where D, represents the threshold value of the
inter-vehicle gap to distinguish the maximum ve-
locity from any lower velocity. (X;,Y3) occurred
when the headway of the i-th vehicle was D; and
the velocity of vehicle i was at maximum; this sig-
nified that the headway was longer than or equal to
D,+D,+D,. A schematic of the relation between
Y;, P(X,,Y;), Dy, Ds, Do, D;, L, and vehicles is
shown in Fig. 2.

P(X;,Y;) can be classified based on the magni-
tude correlation between D; and D, + D, + D,,
and these are listed in Tables 1 and 2. Further-
more, when D, < D; < D, + D,, P(X;,Y;) is the
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Fig.2: A schematic diagram of the relation between Y;, P(X;,Y;), Dy, Ds, Do, D;, L, and vehicles.

marginal distribution of X;. This formulation is
dependent on the assumption that vehicles have a
relation between the headway and velocity.

Subsequently, we can formularize entropy in a
system of n vehicles. The entropy S(X) represent-
ing the location variation is given by Eq. (1), and
the entropy S(Y") is defined by

3
S(Y) ==Y P(Y =Y;)log, P(Y = Y),
j=1

(2)

where Y denotes the discrete random variable, Y
is the j-th possible value of Y, and P(Y =Yj) is a
probability distribution function, as defined in Ta-
bles 1 and 2. S(Y") represents the velocity variation
of all the vehicles. We assume that the velocities
of the individual vehicles are mutually isolated be-
The
entropy S(X,Y’) considering the location and ve-

cause each vehicle is a self-driven particle.

locity variations is defined as

S(X,Y) =

n 3
— Y ) P(X=X;,Y=Y))log, P(X=X,,Y =Y)),
i=1 j=1
where P(X = X;,Y =Yj) is a joint distribution
function, as defined in Tables 1 and 2. In accor-
dance with the formalism of information theory,
Tlogy ¥ =0. S(X), S(Y), and S(X,Y) were cal-
culated when the length of the road L was constant.
The three types of entropy described above can be

used to derive the mutual information I(X;Y);

I(X:Y)=8(X)+ S(Y)-S(X,Y). (3)
3 Detection of Metastable
States Using I(X;Y)

We use the GPS data obtained when three vehi-

cles were platooning on a real expressway in order
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Fig.3: Time evolution of the average velocity
values for three vehicles and average headway
values between the three vehicles.

to verify the characteristics of mutual information.
The velocity and headway are calculated from the
GPS data. Their average values for the three ve-
hicles are shown in Fig.3. After 200 s, there is a
period during which the average velocity increased;
although the average headway values were high in
the early half of this period (200 to 400s), they
were small in the latter half (400 to 600s).

We obtained the real data of the following three
vehicles in open system. To calculate each entropy
defined for a system with periodic boundaries, we
assume that the front vehicle varied the speed and
the succeeding two vehicles increased or reduced
their speed owing to the front vehicle in the cir-
cuit L = 300 [m]. The circuit length L is set such
that it does not exceed the sum of the headways of
the succeeding two vehicles. I(X;Y), as shown in
Fig.4, increases when the average velocity is low
and headway values are small in congested flow
but decreases when the congestion starts to clear.
I(X;Y) obtains different values at 200 to 400 s
and 400 to 600 s because I(X;Y) varies between
a state of high velocity and long headway and in a
state of high velocity but short headway. In other
words, the mutual information I(X;Y") enables the



Table 1: P(X;,Y;) when D, + Dy < D; < Dy + D + D,.

P(X;,Y;) X Xi Xn P(Y;)
% Du+D. D, 1D, D,1D. (D, +D.)
1 L L L
Di—(Dy+Ds) D;—(Dy+D.) Dn—(Dy+D.) n  Di—(Dy+D.)
Ya —1 L L > i1 L
Ys3 0 0 0 0
) | & - = i
Table 2: P(X;,Y;) when D; > Dy, + D, + D,.
P(X;,Y;) X1 X; Xn P(Y;)
% Dy+D; Dy +Ds Dy+D, n(Dy+Ds)
1 L L L L
Da Da Da Da
Y T T T "
Y- D1 —(Dy+Ds+D.) D;—(Dy+Ds+D,) Dp—(Dy+Ds+Da) n  D;—(Dy+Ds+D,)
3 L L L 2 i L
P(X;) o L D. 1
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Fig.4: Time evolution of I(X;Y") of three vehi-
cles (calculated with D, = 5 [m], Dy = 3 [m],
D, =10 [m)]).

detection of a metastable state of high velocity but
short headway. The advantages of using I(X;Y) for
metastable state detection is that using one param-
eter for the detection is easier than two parameters,
considering the computation of autonomous vehi-

cles.

4 Conclusion

We modified the formularization of entropy in
one-dimensional traffic flow from a micro view-
point. This was proposed in previous research [4]
that formularized entropy focusing on headway be-
tween vehicles. We redefined entropy focusing on
the velocity variation of vehicles to formularize en-
tropy and mutual information. Moreover, when

we calculated I(X;Y) using experimental data ob-

a practical application for traffic management as
the detection of these metastable states can be a
sign of imminent congestion. For further details
of this study, please refer to our published article
https://doi.org/10.1016/j.physa.2020.125152.
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