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概要

生物系においては細胞の集団での回転運動がしばしば現れる. 我々はこれらの回転運動の誘導要
因がリーダー細胞である可能性について調べた. この目的の下, 我々はリーダー細胞が異種分子
細胞間接着に持続的な極性を持つことを仮定し, 細胞 Potts模型を基に集団細胞回転運動の模型
を構成した. そして, リーダー細胞がこの回転運動を誘導する可能性を示した.
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Abstract

In biological systems, collective rotations frequently appear in cell aggregations. We examine
leader cells as a possible guide for these collective rotations. For this purpose, we model the
multicellular system based on the cellular Potts model for these rotations by assuming the
persistently-polarized heterophilic cell-cell adhesion of leader cells. We show a possibility that
the leaders guide these rotations.

1 Introduction
In developmental processes in biological sys-

tems, eukaryotic cells collectively and sponta-
neously move to their suitable positions for their
fates [1]. One of the spontaneous collective move-
ments is a persistent collective rotation of cell ag-
gregations [2–4]. For example, this rotation sorts
out Dictyostelium discoideum cells by their fates
[3, 5]. This rotation has been investigated by biol-
ogists and its guiding mechanisms were speculated
to be chemotaxis [6, 7] and molecular chirality [8].
In addition to these mechanisms, the persistence of
the rotation lets us deduce the persistent motility
in individual cells [9, 10]. This rotation, however,
is naively contradictory to the persistent motility,
because the persistent motility seems to stabilize
only the unidirectional order of movements instead
of the rotation [11–15]. Therefore, improvements
for matching these mechanisms to the persistence
is necessary for the understanding of the collective
cell rotations.
As such an improvement, the contact following

was theoretically considered and successfully repro-
duced the rotation [6,7,16,17]. Because the contact
following is implemented by the Vicsek-like interac-
tion based on visual recognition [18], it is not sim-
ply supposed for natural cells in contrast to birds or

fishes. As an alternative improvement independent
of such recognition, we focus on the effects of the
leader cells which drag the surrounding cells [19].
Namely, we hypothesize that the leader cells guide
the rotation. In this case, only the leader cells have
the persistent motility, while the surrounding cells
do not. Hereinafter, we call the surrounding cells
follower cells for convenience in explanation. This
hypothesis is based on the fact that leader cells
cannot stabilize the unidirectional order in their
low concentrations below a certain threshold value
necessary for the order.
In the present work, to examine this hypothesis,

we model these leading and follower cells based on
the cellular Potts model [19, 20]. As a test case of
this hypothesis, we consider a persistent motility
due to the persistently-polarized heterophilic cell-
cell adhesion between leader and follower cells [21]
for tractability in this model. By this model, we
confirm that the leaders successfully guide these
rotations by avoiding the unidirectional order in
the case of a few leaders.

2 Model
For our purpose, this work utilizes the two-

dimensional cellular Potts model. In this model,
cell configurations are represented as Potts states



m(r)’s. Here, r is a coordinate in a square lattice
with linear dimensions of L. m(r) takes a number
in {0, 1, 2, . . . , N}. m(r) is the cell index occupying
r except for m(r) = 0, which is no cell at r. The
fixed number N is the number of cells. These cells
belong to two types of cells with τ(m) = 1 and 2.
τ(m) = 1 indicates that the mth cell is a leader
cell with a polarity vector pm and τ(m) = 2 indi-
cates that the mth cell is an unpolarized cell. We
additionally set τ(0) = 0. By sampling the consec-
utive series of these Potts states with Monte Carlo
simulation, we simulate the cellular dynamics.
For this simulation, the realization probability

for each Potts state is given by the Boltzmann
weight exp(−βH). Here, H is Hamiltonian,

H =
∑
τ

Hτ
S +HA +HB , (1)

and β is an inverse temperature.
The first term in the RHS of Eq. (1) is the surface

term

Hτ ′

S = γτ ′

C

∑
rr′

δτ ′τ(m(r))δτ ′τ(m(r′))ηm(r)m(r′)

+ γτ ′

E

∑
rr′

ηm(r)m(r′)

[
δτ ′τ(m(r))δ0m(r′)

+ δm(r)0δτ ′τ(m(r′))

]
, (2)

where γτ
C is the surface tension of cellular interfaces

for type τ , γτ
E is that between cells with type τ and

the empty space. ηnm is 1 − δnm and δnm is the
Kronecker δ. The summation between r and r′ is
taken over the nearest and next nearest pairs. This
summation rule is commonly applied hereinafter.
The second term in the RHS of Eq. (1) is an

additional surface term [21],

HA =
∑
rr′

ητ(m(r))τ(m(r′))ητ(m(r))0ητ ′(m(r))0

×
[
γH − γp

(
pm(r) · em(r)(r)δ1τ(m(r))

+ pm(r′) · em(r′)(r
′)δ1τ(m(r′))

)]
, (3)

which expresses the heterophilic cell-cell adhesion
on the interface between the leader cells and fol-
lower cells. γH is the strength of surface ten-
sion and γp is the polarized component of the het-
erophilic adhesion [22, 23]. em(r) is a unit vector
indicating from Rm to r, where Rm is the center
of the mth cell as a parameter of adhesion molecule
density [24]. The unit vector pm that is the adhe-
sion polarity of the mth cell,

dpm

dt
= ν

[
dRm

dt
−
(
dRm

dt
· pm

)
pm

]
. (4)

The equation indicates the dynamics of pm follow-
ing the polarity of cytoskeletal polarization in the
direction of dRm/dt [25] and, furthermore, the ad-
hesion molecules binding with intracell cytoskele-
tons, which is well known [26]. This term results
in the driving force of leader cell motions in the di-
rection of pm [27]. Note that the driving is exerted

only through the contact with follower cells [21].
Here, ν is the ratio of dpm/dt to dRm/dt. Rm is
quasistatically equal to the center of domain mass∑

r rδmm(r)/Am with Am =
∑

r δmm(r).
The third term in the RHS of Eq. (1) is the bulk

term,

HB = κA
∑
m

(1− Am

A
)2, (5)

which maintains areas of cells to A. Here κ is the
bulk modulus and A is the reference area. These
values are independent of m and therefore τ(m).
On the basis of H, we simulate the cell dynamics

by the following Monte Carlo simulation [20]: The
time unit of this simulation is taken to be a single
Monte Carlo step (MCs). In this unit, L2 single
flips are attempted. The flip indicates the copy
trial of a Potts state from a randomly chosen site r
to its randomly chosen nearest or next nearest sites.
The flip is accepted with the Metropolis probability
min{1, exp[−β(Hc −H)]} with the Hamiltonian of
the copied state, Hc. After this procedure in MCs,
pm is updated once by Eq. (4) and Rm is set to
the center of domain mass, respectively.

3 Simulations
At the beginning of this section, we explain the

system used in the simulation. We impose the peri-
odic boundary condition for simplicity on the anal-
ysis of the cell motion. For avoiding a finite size
effect of a boundary condition, we employ a suffi-
ciently large system with L = 192. For the purpose
of checking the effect of the leader cells, we compare
two cases. The first system consists of 32 follow-
ers and 32 leaders and the second system consists
of 56 followers and 8 leaders. For convenience, we
call the former the dense leader case and call the
latter, the sparse leader case. The latter case cor-
responds to the expected situation for the rotation
in the introduction.
Next, we move onto the explanation of the model

parameters. We consider the parameters β = 0.5,
κ = 10, τ = 10 to realize the cell motion by the
flexible deformations of cell shapes. For realizing
the collective motion of cells, the aggregation of
all the cells are necessary [1]. For this, we set the
surface tensions between cells less than twice the
cell-empty interface tensions. Concretely, we im-
pose γ2

C = γH = 4.0 and γ1
E = γ2

E = 6.0. For
this, we set γ1

C = 9.0 larger than 2γH . We also
assume the leader cells aggregate without follower
cells, and therefore impose γ1

C less than 2γ1
E . For

the propulsion, we employ a sufficiently large value
of γp, 1.0. By this choice, we can easily observe
the motions of leader cells in cell aggregations and
satisfy a necessary condition for the leader to drag
the follower cell rotations.
In these settings, we simulate the collective mo-

tion of cells. Hereafter, we explain the simulation
and the observations of the collective motion. From
Eq. 4, the collective motion is expected to reflect in
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Fig. 1: Snapshots of cell configurations for (a)
the dense leader case and (b) the sparse leader
case. Violet colored domains are leader cells.
Yellow or orange colored domains are follower
cells. Red arrows in leader domains represent
the direction of adhesion polarity.

the configuration of leaders’ polarities. Therefore,
to confirm the type of collective cell motion, we
sample cell polarities in the steady states. In this
case, the initial state consists of an 8-by-8 array
of cells. Each cell has the 8-sites × 8-sites square
shape and they are separated from the neighboring
cells by an interval. The leader cells are aligned at
4-by-8 for the dense leader case and 1-by-8 for the
sparse leader cells. In this case, the leader cells are
separated from the follower cells. To obtain the
steady states from this initial state, we simulate
the relaxation of the state during 2 × 104 MCs.
After the relaxation, we sample steady states. The
steady states do not depend on the initial states.
In fact, the leader and follower cells mix as shown
in Fig. 1 and therefore relax their surface tension
from the initially-separated states. Here, the pan-
els (a) and (b) show the aggregated state of cells
for the dense and sparse leader cases, respectively.
For the dense leader case, the leader configura-

tion takes a checkerboard pattern of leader cells
[28, 29]. This pattern reflects the suspension con-
dition of leader cells in the aggregation: The sur-
face tensions satisfy 2γH < γ1

C and inhibits the
contacts between the leader cells. Owing to this
pattern, the leader cells are relatively restricted to
each other in their relative positions. This restric-
tion effectively realizes a similar situation of a uni-
form system consisting of leaders and reflects in
the unidirectional polarity order of leader cells. As
a result, the cell aggregation behaves as a moving
droplet with motility persistence.
In contrast to the dense leader case, the leader

cells in the sparse leader case randomly disperse in
the aggregation of cells. The random dispersion re-
sults from the absence of the positional restriction
and thereby the disorder of the leader polarities.
However, the polarities in the snapshot seemingly
rather align in similar directions in contrast to the
rotation in the contact following [6]. Therefore, if
the collective rotation appears, the rotation may
not steadily but statistically occur in a long time
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Fig. 2: Trajectories of a leader cell and a fol-
lower cell for (a) the dense leader case and (b)
the sparse leader case. Black line represents the
trajectory of a leader cell. Red line represents
the trajectory of a follower cell. The origin of
trajectories is taken at the position of the fol-
lower after the relaxation.

even if it occurs. For the careful examination of
the rotation, the cell rotation should be confirmed
not indirectly by the snapshot but directly by the
trajectories of cells.
To directly confirm the cell rotation from the

cell trajectories, we calculate the trajectories of the
leader and follower cells. For the comparison with
the dense leader case with the polar order, we show
the trajectories in Fig. 2(a) for the dense leader
case and in Fig. 2(b) in the sparse leader case. For
the dense leader case, the trajectories of the leader
and follower cells are almost the same and there-
fore, suggest the collective cell motion in the same
direction. In contrast to this, the rotational motion
of the cells appears in the sparse leader case as pre-
viously expected. Thus, we confirm the collective
cell rotations as a leader effect.
To speculate the driving mechanism of this rota-

tion, we focus on the leader motion in this rotation.
Leader cells mainly stay in the boundary of aggre-
gation and move along it in our observation. In
fact, reflecting this motion, the leaders take their
rotation radius equal to the radius of the aggrega-
tions, which is (NA/π)1/2 ∼ 4.5A1/2 as shown in
Fig. 2(b). From this observation, we can speculate
that the leaders drive the boundary of the aggrega-
tion in the rotation direction by dragging follower
cells because the leader cells cannot move in the
normal direction of the boundary.



4 Summary and Remarks
In conclusion, we confirm the collective cell ro-

tation guided by leader cells. From our simula-
tion, the number of leader cells is necessary to be
small for stabilizing the rotation. This is because
the dense leader cells stabilize the polar order and
thereby inhibit the rotation [19].
This collective cell rotation has two prominent

properties. One prominent property is the per-
sistence of the collective cell rotation. Namely,
the direction of the rotation does not change in
a long time. The mechanism of this persistence
may originate from the persistence of leaders’ po-
larities. However, as shown in Fig. 1(b), the di-
rection of leaders’ polarities are not always aligned
in the same direction consistent with the rotation.
Namely, the persistence of polarities apparently
does not contribute to the persistence of the rota-
tion. Therefore, another origin of the persistence of
rotation is expected. One possibility of this align-
ment is the long-range coupling of leaders’ polari-
ties through the motion of follower cells as shown
by Kabla for the collective migration [19]. This
coupling may statistically stabilize a slight net po-
larity consistent with the rotation.
The other prominent property is the fact that

the velocities of leader cells are two times faster
than those of follower cells as shown in the num-
ber of trajectory circles in Fig. 2(b). This prop-
erty may be useful as a sufficient marker of the
leader-guiding. Namely, the leader mechanism can
be explored by the experimental observation of the
cell trajectories in the collective cell rotation in the
future. When our setting is realized, the distri-
bution of cell velocity or displacement is predicted
to become bimodal because of the difference be-
tween the leader and follower cells in their veloc-
ities. Such a bimodal distribution has never been
reported in experiments of Dictyostelium discoidem
at least. Therefore, this absence of the report at
least in Dictyostelium discoidem implies another
still-uncovered solution where the leader and fol-
lower have the same velocity.
For the universality of these properties on the

propulsion, we additionally give a remark. In the
present work, we assume the heterophilic cell-cell
adhesion as a propulsion source of leader cells. We
expect that these properties do not depend on the
origin of the motility and depend only on the per-
sistence of motility’s polarity. This is necessary for
rotations of leaders to avoid simple random walks.
If the polarity has persistence, this leader mech-
anism is applicable to the cases of propulsion by
either chemotaxis or molecular chirality.
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