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概要

サイトごとに二種類の移動確率 p1 と p2 のいずれかが割り当てられている開放境界でパラレル

アップデートの完全非対称単純排他過程に関して、移動確率のばらつきが流量に与える影響につ

いて解析した。二種類の移動確率の配置の仕方として、(1) p1と p2をそれぞれかたまりで配置、

(2) 各々のサイトに p1と p2を二項分布に従うように配置の 2通りの場合を考えた。ホップ確率

の値のばらつきが流量に与える影響は、境界条件に関わらず、ホップ確率の配置方法によって大

きく異なることが明らかになった。
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Abstract

We investigate the influence of variation of hopping probabilities on current of inhomogeneous

Totally Asymmetric Simple Exclusion Process with two hopping probabilities in parallel update

under open boundary condition. We study two types of systems with different distribution of

disorder : (1) sites are zoned by two different hopping probability subsystems and (2) sites are

disordered by binary distribution. The results show that the effect of variation of the value of

hopping probabilities differs greatly with allocation method regardless of boundary condition.

1 Introduction

Totally asymmetric simple exclusion process

(TASEP) has been widely studied to model non-

equilibrium systems such as production flow, ve-

hicular traffic, and biological transport. Since it

was revealed that even a single defect on TASEP

could lead to global effects on the system [1], theo-

retical and numerical investigations have been con-

ducted intensively. Especially in traffic systems,

jamming phenomena can be attributed to local de-

fects, e.g., narrowing corridors, lane reductions or

local speed limits. However, the precise effect of a

local defect has not been clarified and it was not

until recently that it was revealed whether a finite

defect of strength is required to create global effects

[2]. While many studies consider a site with lower

hopping probability p2 (< 1) as “defect” compared

to the normal sites whose hopping probability p1

are set to 1, there are few studies that investigate
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the case of p1 < 1 and the relationship between p1

and p2. In this research, we focus on the variation

of p1 and p2 and study the influence on the cur-

rent of the whole system. Our interest centers on

whether variation effect the current and if it does,

how much influence is given. We investigate two

types of inhomogeneous TASEP with different al-

location method and discuss the differences.

2 Zoned disorder

2.1 Description of the model

Let us first define the model of the disordered

TASEP in parallel update under open boundary

condition. The original TASEP with input proba-

bility α, output probability β and uniform hopping

probability p is defined in a 1D lattice of L sites.

Each site can hold at most one particle. However,

in our zoned disorder model, the system is divided

into two segments (Fig.1). The hopping probabil-

ity of each site in Segment 1 and Segment 2 is p1

and p2, respectively. Here, we only investigate the

case of p1 > p2. Throughout this paper we are

mainly interested in the current of stationary state

in the limit of L → ∞. If the mean p = p1+p2

2

and standard deviation s = p1−p2

2 of p1 and p2 are

given, we can get p1 = p+ s and p2 = p− s.

In order to quantitatively evaluate the effect of

the variation of hopping probabilities on the cur-

rent, we compare the current of system (A), JA,

and (B), JB . System (A) is an inhomogeneous

TASEP with two hopping probabilities, while sys-

tem (B) is a homogeneous TASEP with hopping

probability p − ∆p. By solving JA = JB, we ob-

tain the relationship between s and ∆p, ∆p = f(s).

Thanks to the this formula, we can convert the vari-

ation of hopping probability of an inhomogeneous

TASEP into a reduction of the hopping probability

of a homogeneous TASEP. For example, if p1 = 0.7

and p2 = 0.3 in System (A) and p − ∆p = 0.4 in

System (B), it indicates that standard deviation of

s = 0.2 of an inhomogeneous TASEP corresponds

to a decrease of hopping probability, ∆p = 0.1,

of a homogeneous TASEP with p = 0.5. In this

subsection, we calculate the current and obtain the

phase diagram of the above-mentioned inhomoge-

Fig.1: Illustration of an inhomogeneous TASEP
with two hopping probabilities. The hopping
probability of each site in Segment 1 and Seg-
ment 2 is p1 and p2, respectively.

Fig.2: System (A) is a inhomogeneous TASEP
with two hopping probabilities p1 and p2. Sys-
tem (B) is a homogeneous TASEP with hopping
probability p−∆p.

nous TASEP model. In a homogeneous TASEP

with hopping probability p, there are three phases

(low-density (LD), high-density (HD), and max-

imal current (MC)) and current for each phase

can be solved exactly as follows [3]: in LD phase

(α < β, α < 1−
√
1− p), J = α(p−α)

p−α2 , in HD phase

(α > β, β < 1 −
√
1− p), J = α(p−α)

p−α2 , and in MC

phase (α > 1 −
√
1− p, β > 1 −

√
1− p), J =

1−
√
1−p
2 . Since Segment 1 and Segment 2 can be

considered as a homogeneous TASEP with hopping

probability p1 and a homogeneous TASEP with

hopping probability p2, we can apply the above

exact solution of current to each segment. We de-

note the current of Segment 1 and Segment 2 as J1

and J2, respectively. Furthermore, in a stationary

state, the current of Segment 1 should be equal to

that of Segment 2, J1 = J2 [4]. For example, when

Segment 1 is in LD phase and Segment 2 is in HD

phase, J1 = α(p1−α)
p1−α2 and J2 = β(p2−β)

p2−β2 . By solv-

ing J1 = J2 (= JA), we can get conditions of α

and β. The current JA (Appendix) of other phases

can also be calculated approximately and the phase

diagram can be obtained as shown in Fig. 3.

2.2 Results

By using the results of Subsection. 2. 2 and

solving JA = JB, ∆p = f(s) can be formulated de-

pending on α and β as follows (Fig. 3):

(Area 1) ∆p = p− α2 (p−s−β2)−β(p−s−β)
α(p−s−β2)−β(p−s−β)

(Area 2) ∆p = s
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Fig.3: The black lines represent the Phase tran-
sition of inhomogeneous TASEP with two hop-
ping probabilities p1 = 0.6 and p2 = 0.4. The
red lines represent the Phase transition of ho-
mogeneous TASEP with hopping probability
p = 0.418.

(Area 3) ∆p = −s

In Area 1, the relationship between s and ∆p is

hyperbolic function. The larger the variation of

hopping probability is, the smaller the current of

the system is. Therefore, in this area, the vari-

ation of hopping probability has direct influence

on the current. In Area 2, which is included in

the HD phase and the MC phase, Segment 2 with

the smaller hopping probability p2 is the bottle-

neck and it has a dominant influence on the cur-

rent. The current of the whole system corresponds

to that of a homogeneous TASEP with hopping

probability p2. Contrarily, in Area 3, which is in-

cluded in the LD phase, even though Segment 2 has

smaller hopping probability, it is not the bottleneck

of the system and the current corresponds to that

of a homogeneous TASEP with hopping probabil-

ity p1, the higher hopping probability. This is due

to the fact that the higher hopping probability area

is near the left edge which particles come into the

system. Since the input probability is low in Area

3, the hopping probability on the left edge has cru-

cial influence on the current of the whole system.

In summary, the variation of hopping probabil-

ities has effect on the current directly under very

limited conditions, Area 1. In most of the condi-

tions of α and β, Area 2 and Area 3, the current

does not depend on the variation of the hopping

probabilities but corresponds to the current of a

homogeneous system with either p1 or p2.

3 Binary distribution disorder

3.1 Description of the model

Fig.4: Illustration of an inhomogeneous TASEP
with two hopping probabilities distributed to
sites by binary distribution function.

The conditions of the model are equivalent to the

model described in Subsection. 2. 1 except that

two hopping probabilities p1 and p2 (p1 > p2) are

allocated to sites by binary distribution function.

The hopping takes place with a site-dependent hop-

ping probability pi which is drawn from a distribu-

tion function f(p) (Fig. 4). There is no spatial cor-

relation between the pi (i = 1, · · · , L−1) and it can

be regarded as independent stochastic variables.

We denote the binary probability for p1 and p2 as

1 − f and f , respectively. The form of the binary

distribution is f(p) = (1−f)δ(p−p1)+fδ(p−p2) as

in [5]. The mean and variance are p = (1− f)p1 +

fp2, s
2 = (1 − f)p1

2 + fp2
2 − ((1 − f)p1 + fp2)

2,

respectively. We set the f = 0.5 so that the appear-

ance ratio of p1 and p2 in the system is 1 : 1 and

that the mean, p = p1+p2

2 , and variance, s = p1−p2

2 ,

are same as those of TASEP with zoned disor-

der. Therefore, the only difference between TASEP

with zoned disorder and TASEP with binary distri-

bution is how p1 and p2 are allocated to the sites.

3.2 Numerical Analysis

In this subsection, we show the results of the

numerical simulations with L = 300 sites and aver-

aging has been executed over 100 disordered sam-

ples. Fig. 5 is a graph that shows J vs s with LD

(α = 0.05, β = 0.8), HD (α = 0.8, β = 0.05), MC

(α = 0.9, β = 0.9) when the mean of hopping prob-

abilities are fixed at p = 0.5 with various standard

deviation. Contrary to the case of zoned disorder,

it depicts that, in all phases, the effect of increasing

the standard deviation is to decrease the current.

The decrease of the current of the MC phase ex-

hibits a sharper decrease compared to that of the
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LD phase and the HD phase. It indicates that, es-

pecially in MC phase, it is better to decrease the

variation of the hopping probabilities in order to

increase the current. The feature of the LD phase

and the HD phase are similar and the s does not

have influence on the current while the s is larger

than approximately 0.3.

Therefore, we investigate the MC phase inten-

sively. Fig. 6 shows the the graph of J vs p2

with A (Inhomogeneous system with f = 0.5 ),

B (Homogeneous system with hopping probability,

p = 0.5+ 0.5p2, and C (Homogeneous system with

hopping probability p2) when α = β = 0.9, MC

phase. We compare the current of an inhomoge-

neous system, A, and a homogeneous system, B,

which has the hopping probability which is equiv-

alent to the mean of the inhomogeous system A,

as we examined in subsection 2. 1. It shows that

when p2 is small, the difference of the current of A

and B is notably large. As mentioned in Subsection

2. 3, the current of an inhomogeneous TASEP is

equivalent to that of a homogeneous TASEP with

low hopping probability p2. Hence, we also draw a

comparison between A and homogeneous system,

C, with low hopping probability p2. Although the

feature of the increase of current of A and C when

p2 → 1.0 are approximately the same, the current

of them are not consistent, contrary to the result

of Subsection 2. 3. It indicates that the binary dis-

tribution disorder enhances the current compared

to zoned disorder.

4 Conclusions

In this study, we investigated inhomogeneous

TASEP with two hopping probabilities allocated

to sites by two different arranging methods, p1 and

p2 allocated to sequence of consecutive sites and

allocated to each site randomly by binary distri-

bution. We have identified distinctive features be-

tween them that the variation of hopping proba-

bilities has large effect on the current when p1 and

p2 are allocated to sites randomly, but not on that

with a zoned disorder.
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Fig.5: J vs s.

Fig.6: J vs p2.
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6 Appendix

JA = α(p1−α)
p1−α2 when α < X and β ≥ Y ,

JA = β(p2−β)
p2−β2 when β ≥ Y and β < Z and

JA = 1−
√
1−p2

2 when α ≤ X and β > Z.

X = 1
p2

(
p1 +

√
−p1 (p1p2 − p1 − p22 + p2)

−
√
−p1p22 +

(
p1 +

√
p1 (−p1p2 + p1 + p22 − p2)

)2

,

Y = 1
2p1(α−1)

(
p2(α

2 − p1)

+
√
p2(α4p2 − 4α3p1 + 4α2p21 − 2α2p1p2 + 4α2p1 − 4αp21 + p21p2)

)
,

Z = 1−
√
1− p2.
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