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概要

本研究では細胞の集団運動での込み合い効果を単分散性の反発相互作用セルラー Potts模型で調

べた. 細胞が疎な場合と比較すると, 込み合った細胞では集団運動を起こす推進力閾値が大きく

下がることが分かった. この結果から, 込み合いにより細胞は極性秩序を促進し, 集団運動を行う

と言える.
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Abstract

We investigate the crowding effect in a collective cell motion in the cellular Potts model with

the monodispersity and repulsive interaction. In comparison with scattered cells, the threshold

propulsion of crowding cells for forming a collective motion is largely reduced. We suggest that

the crowding boosts the polarity order and stabilizes the collective cell motion.

1 Introduction

Collective motions of eukaryotic cells with a di-

rectional order often appear in organogensis [1].

The collective motions are stable even in fluctua-

tions of their shapes and surrounding tissues. A

possible stabilizer of the collective motions is a

crowding effect of cells. For example, the collective

motion is stabilized by the exclude volume inter-

action of crowding cells, which suppresses random

motions. This stabilization mechanism essentially

differs from that in the Vicsek-type model without

the exclude volume [2] and has been not sufficiently

explored.

In the exploration, there exists the issue that

the crowding effect on the collective cell motions

cannot simply be distinguished from other effects,

which also promotes the collective motions. For ex-

ample, the effect has not been clearly distinguished

from the polarity memory effect [3,4]. In addition,

the crowding effect is canceled by the jamming in

the case of polydisperse crowding cells [5,6]. In ex-

perimental investigations, we should carefully con-

trol states of cells, while healthy eukaryotic cells are

empirically known to have monodispersity. Instead

of this experiment, the present work theoretically

realizes a tractable model of cells in a computer

and thereby aims to examine the crowding effect.

In the present paper, we investigate a collective

motion of crowding cells based on the cellular Potts

model [7]. We consider a range of propulsion less

than the fluctuation energy scale in order to avoid

the alignment effect of the polarity memory. In ad-

dition, we employ an ideal monodisperse system to

avoid jamming states. We compare the motion and

configuration between the scattered and crowding
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cells. We show that the crowding boosts the polar-

ity order and stabilizes the collective motion.

2 Model

We employ the cellular Potts model with low

propulsion for the comparison between the scat-

tered and crowding cases. The dynamics of cells in

this model represents the dynamics of Potts states

{m(r)} in the monte carlo simulation. Here, r is a

site of a square lattice with the linear size L. m(r)

is a number in {0, 1, 2, . . . , N}. For m(r) ̸= 0, r is

occupied by the m(r)-th cell. For m(r) = 0, r is

empty. The total number of cells, N , is fixed to a

certain number. Hamiltonian of the state is

H = HS +HB +HP . (1)

The first term in Eq. (1) is the surface free energy

HS = γC
∑
rr′

ηm(r)m(r′)η0m(r′)ηm(r)0

+ γE
∑
rr′

ηm(r)m(r′)

[
δ0m(r′) + δm(r)0

]
, (2)

where γC is the surface tension between cells, γE is

that between cells and the empty space. ηnm is 1−
δnm and δnm is the Kronecker δ. The summation

of the site pairs between r and r′ is taken over the

nearest and next nearest sites.

The second term is the Bulk free energy,

HB = κ
∑
m

(1−
∑

r δmm(r)

A
)2, (3)

where κ is the bulk modulus and A is the refer-

ence occupation area. A is common for all cells to

inhibit jamming states due to the polydispersity.

The third term is the propulsion energy [4, 8]

HP = −ε
∑
m

∑
r∈Ωm

pm · em(r). (4)

It expresses the persistent motions of cells by col-

laborating with the equation of the unit vector pm

that is the polarity of mth cell [9–11],

dpm

dt
=

1

τ

[
dRm

dt
−
(
dRm

dt
· pm

)
pm

]
. (5)

Here, ε is the propulsion, Ωm is the set of sites

occupied by the mth cell, em(r) is a unit vector

indicating from Rm to r, τ is the ratio of dRm/dt

to dpm/dt, where Rm is the center of the mth cell

as a parameter of propulsion. Rm is quasistatically

equal to
∑

r∈Ωm
r/

∑
r∈Ωm

.

The monte carlo Monte Carlo procedure based

on H is constructed as follows: the monte carlo

Monte Carlo step (mcs) consists of L2 single flips.

In the single flip, the copy of a Potts state is at-

tempted to randomly chosen site r from its ran-

domly chosen nearest or next nearest site. The

copy is accepted with Metropolis probability with

an inverse temperature β [7]. In single mcs, pm

and Rm are fixed with the assumption that they

are slow variables. pm and Rm are updated once

between each two consecutive mcs by Eq. (5) and

Rm =
∑

r∈Ωm
r/

∑
r∈Ωm

, respectively.

In this simulation, we employ the system with L

= 196 and A = 64. We impose the periodic bound-

ary condition to enable us to avoid the vortex or

jamming due to complex confined boundary con-

dition [6]. We choose N = 256, 324 for scattered

cases and N = 529 for crowding case. These val-

ues correspond to the area fractions of ϕ = NA/L2

= 43%, 54% and 88%, respectively. The latter is

above the random close packing fraction of ϕ ≃
84% [12] and is near the value used in the previous

work [6]. We consider the parameters β = 0.5, κ

= 0.3 × A2, τ = 20.0 to realize the cell motion by

the flexible deformations of cell shapes. We realize

the repulsively interacting cells by γC = 5.0 and γE

= 2.0 to exclude the effect of the cell-cell adhesion,

which is another factor of the collective motion and

thereby complicates our examination.

3 Results and Discussions

To investigate the motion order, we consider the

polarity order. Since the polarity order indicates

the order of propulsion directions, it is a suitable

probe of the motion order [2]. The polarity order

is defined by finite values of the order parameter,

P =

∣∣∣∣∣ 1T
∫ T

T0

dt
1

N

∑
m

pm

∣∣∣∣∣ , (6)

where T0 is the number of mcs for the relaxation of

states from an initial state. We choose the initial

state where the cells are aligned in a square lattice

array with randomly oriented polarities. We em-
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図 1: P as a function of ε for N = 256 (+), N = 324 (×) and N = 529 (+×). The snapshots of states at
ε = 0.002 for (b) N = 529 and (c) N = 256. Different color domains are different cells and white arrows
at the center of cells are polarities. Black regions are empty space.

ploy T0 = 105 empirically. T is the number of mcs

for the order parameter calculation. We set T =

5× 104. The value of P takes unity in the motion

order and otherwise takes small smaller values.

We employ low values of ε corresponding to cell

propulsion less than the shape fluctuation of cells at

β−1 = 2.0. This aims to avoid the polarity memory

effect that stabilizes the collective cell motion in

the strong propulsion [4]. To do this, we firstly

calculate the range of ε where the collective motion

is absent in the scattered cases (N = 256 and N

= 324). Then, we examine the collective motion of

crowding cells in this range.

We plotted P as a function of ε for the scattered

and crowding cases in Fig. 1(a). The logarithmic

plot for the horizontal axis of ε is used for the con-

venience of data displaying for very low values of

ε. For the scattered case, P rapidly increases at

threshold values of ε. In this case, the threshold

takes a value larger than the order of 10−2. There-

fore, we focus on ε lower than the threshold and

examine the crowding case. In this range of ε, the

threshold value of ε for the crowding case (N =

529) is not clearly observed. For low values of ε, P

has finite values down to very small ε’s in the order

of 10−4. Thus, the threshold value of ε is several

ten times smaller than that for N = 256 at least.

Next, we move onto the examination of the cell

configuration in order to get insights into the ori-

gin of the collective motion for the discussion later.

For this purpose, we choose ε = 0.002, where P for

the crowding case is almost unity and that for the

scattered case is negligibly small. We give snap-

shots of the cell configurations and their polarities

in Figs. 1(b) and 1(c) for N = 529 and N = 256, re-

spectively. For the crowding case in Fig. 1(b), the

cells do not only align their polarity in the same

direction but also take a near regular lattice con-

figuration. It is contrast with the fluid states of

both the degrees of freedom in the scattered case

in Fig. 1(c). This suggests that the crowding sup-

presses the fluctuation and thereby stabilizes the

orders in the polarity and configuration.

Hereafter, let us discuss the dependence of P on

ε and speculate the underlying mechanism of the

orders. This behavior of P as a function of ε is out-

side the scope of the scaling law for large ε in the

previous work [4]. This is because the necessary

condition for the collective motion in the previous

work is independent of ε. In addition, since ε is

less than other energy scales, energy crossover is

absent for this range of ε. In the present case, the

threshold value of ε is expected to be the simple en-

tropic effect that the directed propulsion is washed

out by the isotropic shape fluctuation in Eq. (5).

Therefore, the threshold is speculated to be deter-

mined by the ratio of ε to β−1, namely βε and is

independent of N . In fact, the threshold values are

almost common between N = 256 and N = 324.

On the basis of this speculation, the persistence

motion, which is necessary for the collective motion

in the previous work [4], is expected to disappear

for small βε below the threshold. In fact, for ε of

0.002 below the threshold, the scattered cells ex-
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hibit diffusive behavior d2 ≃ t in their mean square

displacements d2 in all ranges of the time period t

down to 10 mcs in our observation (not shown).

The corresponding persistence length of the cell

trajectory is negligibly short: the estimated persis-

tence length is at most 10−2a with the measured

cell velocity of 10−3a/mcs in the scattered case,

where a is the lattice constant.

If the threshold value is determined only by the

value of βε, the threshold value for the crowding

case is independent of the density. In this case, the

threshold is expected to be the similar value of the

scattered case at the same value of β. However, the

finite values of P down to 10−4 are unexpectedly

observed. This result implies the crowding effect

on this collective motion. Namely, by suppressing

the shape fluctuation of cells, the crowding boosts

the emergence of the polarity order originally as-

sociated with the persistent motion, which disap-

pears in the fluctuation in the scattered case. And

finally, it stabilizes the collective motion.

4 Summary and Remarks

In this simulation, we examined the crowding

effects in the collective cell motion. Even in low

propulsion, the crowding cells form an unexpected

collective motion with the emergence of the polar-

ity order. This implies that the crowding natu-

rally boosts the order of polarities and thereby the

collective motion. It suggests the hypothesis that,

in crowding situations, cells utilize this boosting

for stabilizing the collective motion in organogen-

esis with strategically keeping certain levels of the

monodispersity as observed for wild-type cells.

Let us consider the confirmation of the mech-

anism of the boosting. As mentioned above, the

mechanism is expected to be the suppression of the

cell shape fluctuation in the crowding cells. Fur-

thermore, since the configuration has a triangular

lattice in the snapshot in Fig. 1(b), the suppres-

sion may further be enhanced by the lattice forma-

tion through the Alder transition in the comoving

frame. The confirmation for this suppression is ba-

sically possible on the basis of the detail fluctuation

analysis of cell configurations and needs further ex-

aminations including this analysis in future works.
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