
 

Introduction of intermediate defense measure in an evolutionary vaccination game 

Muntasir Alam 1, 2, Jun Tanimoto 1, 3  

1 Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan 
2 Department of Applied Mathematics, University of Dhaka, Bangladesh 

3 Faculty of Engineering Sciences, Kyushu University, Japan 

 

Abstract 

We establish a new mathematical framework of vaccination game that successfully can reproduce individual’s decision making process by 

introducing couple of imperfect provisions besides taking the two extreme options of committing or not committing vaccination as their 

preliminary choices. A theoretical approach has been developed to model the real situation when intermediate defense measure (IDM) is 

introduced in an infinite and well-mixed population. Our theoretical result reveals that the introduction of IDM seems beneficial that can be 

justified in terms of the vaccination coverage, social average payoff, and other cost effect point of view during an epidemic outbreak.

 

1. Introduction 

   Over the last couple of decades, the severity of infectious 

disease spreading has been marked as one of the biggest 

threats imposed on human societies. From that viewpoint, 

pre-emptive vaccination could be the most effective 

intervention method for preventing disease transmission as 

well as reducing morbidity and mortality [1-2]. Evidence 

shows that there exists a complex interaction between 

human vaccinating behaviors and disease prevalence 

during an epidemic. Based on the outcomes obtained from 

various strategies, people can choose their best one to 

maximize their own payoffs which is considered as the 

fundamental premise of game theory. However, 

individuals may change their behavior in accordance to the 

changes in their perceived risk of becoming infected, and 

other socio-economic aspects. Therefore, evolutionary 

game theory (EGT) has been applied in the field of 

epidemiology by many researchers [3].  

   Voluntary vaccination scheme has a social dilemma 

structure that attracts people to free ride on other people’s 

cooperative behavior rather getting themselves vaccinated. 

A vaccinator bears vaccination cost, time loss, and possible 

side effects entailed with vaccination while a non-

vaccinator spends nothing but always undertakes the risk 

of being infected. In this context, it is indispensable to build 

up a prognostic theoretical model, such as Susceptible-

Infected-Recovered (SIR) model incorporated with the 

EGT taking into account of individuals’ decision making 

process toward vaccination or any other preventive 

measures popularly known as “vaccination game” [3-8]. 

Out of a bunch of studies made before, one pioneer work is 

proposed by Fu et al. who provided the original template 

of vaccination game [4]. After that Fukuda et al. developed 

a new strategy updating rule [2] and subsequently explored 

what happens if an epidemic spreading topology is 

inconsistent with the strategy-updating network [9], and if 

stubborn vaccinators and non-vaccinators are present in the 

social network [10]. Although most of the previous studies  

 

 

dealing with vaccination game presumed vaccination as a 

perfect provision but in the real world vaccination always 

does not work perfectly for diseases like Flu, Measles, HIV, 

and Influenza which gives rise to the concept of 

“effectiveness of vaccination” [11]. Furthermore, there are 

also some alternative protective measures, i.e. washing 

hands, wearing masks, gargling, and drinking energy 

drinks, termed as intermediate defense measure (IDM). 

Therefore, imperfect vaccination should be taken into 

account with significant impact on game theoretic analysis 

which reveals the fact that some vaccinated individuals 

obtain perfect immunity with a probability e, meanwhile, 

the remaining individuals fail to get immunity with a 

probability 1-e [11-13]. Generally, the efficiency of some 

protective measures other than vaccination can also be 

expressed probabilistically which ensures partial 

protection against infection spreading while costing less 

than vaccination. 

   Motivated by the aforementioned facts, we propose a 

simple compartment model (e.g. SIR/VMB) taking on a 

theoretical approach. Besides taking IDM as the third 

strategy, our study substantially addresses the fourth 

strategy that allows taking both vaccination and IDM at the 

same time during a single epidemic season. It also premises 

that some people might also like to invest for two 

preventive provisions at the same time anyway to avoid 

being infected if an IDM requires smaller cost vis-à-vis 

vaccination. It might also be justified from the seriousness 

of the disease spreading. Intuitively, during the severe 

spreading of an infectious disease, “fourth strategy” 

meaning taking both provisions is more reliable to deal 

with the worst scenario of epidemic. 

The remainder of this paper is comprised as follows: 

Section 2 provides the model description in detail. 

Following to that, section 3 presents numerical results and 

the relevant discussions. At the very last section, this paper 

also elucidates a holistic summary of our findings that ends 

with the conclusion we draw. 



 

2. Model description and results 

2.1 Epidemic model 

   At the beginning, we consider SIR model which is then 

extended to establish SIR/VMB dynamics by considering 

vaccinators, third and fourth strategy holders as SIR 

variants. This modified SIR model allows three imperfect 

defense provisions considering the population being 

infinite and impeccably well mixed. Taking the model 

proposed by Kuga et al. as a guideline [11], we introduce 

two imperfect provisions (e.g. third strategy (denoted by M, 

explained later) and fourth strategy (denoted by B)) besides 

taking vaccination. Let us consider the effectiveness of 

vaccine be 𝑒 (0 ≤ 𝑒 ≤ 1) and the efficiency of IDM be 𝜂 

(0 ≤ 𝜂 ≤ 1), meaning how taking the third strategy can 

reduce the risk of being infected. As a general assumption, 

we consider the cost of IDM must always be less than that 

of vaccination. Using a compartment model, the epidemic 

spreading dynamics is described where the individuals in a 

population can be classified into susceptible (S), infected  

(I), recovered (R), vaccinated (V), self-protected; meaning 

taking IDM (M) and combined protection; meaning taking 

both; vaccination and IDM (B) states. A non-provisioned 

susceptible individual may turn into infected if he/ she is 

exposed to infectious individuals at the disease 

transmission rate β (per day per person). An individual 

prepared with the defense against contagion who is in (S) 

may still have the possibility of becoming infected at the 

rate; (1 − 𝜂)β. Meanwhile, an infected individual recovers 

at the recovery rate γ (per day) and the ratio of disease 

spreading rate with recovery rate (i.e. β/ γ) is termed as 

basic reproduction number, denoted with R0. 

Table 1. Fractions of eight types of individuals. 

Strategy/State Healthy Infected 

Vaccinated 𝐻𝑉(𝑥, 𝑦, 𝑧, ∞) 𝐼𝑉(𝑥, 𝑦, 𝑧, ∞) 

IDM 𝐻𝑀(𝑥, 𝑦, 𝑧, ∞) 𝐼𝑀(𝑥, 𝑦, 𝑧, ∞) 

Vaccinated & IDM 𝐻𝐵(𝑥, 𝑦, 𝑧, ∞) 𝐼𝐵(𝑥, 𝑦, 𝑧, ∞) 

Defector 𝑆𝐹𝑅(𝑥, 𝑦, 𝑧, ∞) 𝐹𝐹𝑅(𝑥, 𝑦, 𝑧, ∞) 

Where, 

    HV: Healthy Vaccinator                  IV: Infected Vaccinator 

    HM: Healthy IDM                  IM: Infected IDM 

    HB: Healthy Both             IB: Infected Both 

    SFR: Successful free-rider                  FFR: Failed free-rider  

Table 2 Estimated payoff at the end of each season  

Strategy/State Healthy (H) Infected (I) 

Vaccinated (V) −𝐶𝑟𝑣  (HV) −𝐶𝑟𝑣 − 1   (IV) 

IDM (M) −𝐶𝑟𝑚 (HM) −𝐶𝑟𝑚 − 1  (IM) 

Vaccinated & IDM (B) −𝐶𝑟𝑏 (HB) −𝐶𝑟𝑏 − 1   (IM) 

Defector (FR)      0  (SFR)      −1      (FFR) 

   The proposed model is governed by the following set of 

coupled differential equations: 

𝑑𝑆(𝑥,𝑦,𝑧,𝑡)

𝑑𝑡
= −β𝑆(𝑥, 𝑦, 𝑧, 𝑡)𝐼(𝑥, 𝑦, 𝑧, 𝑡), 

𝑑𝑉(𝑥,𝑦,𝑧,𝑡)

𝑑𝑡
= −β(𝑉(𝑥, 𝑦, 𝑧, 𝑡) − 𝑒𝑉(𝑥, 𝑦, 𝑧, 0))𝐼(𝑥, 𝑦, 𝑧, 𝑡),  

𝑑𝑀(𝑥,𝑦,𝑧,𝑡)

𝑑𝑡
= −(1 − 𝜂)β𝑀(𝑥, 𝑦, 𝑧, 𝑡)𝐼(𝑥, 𝑦, 𝑧, 𝑡),     (1) 

𝑑𝐵(𝑥,𝑦,𝑧,𝑡)

𝑑𝑡
= −(1 − 𝜂)β(𝐵(𝑥, 𝑦, 𝑧, 𝑡) − 𝑒𝐵(𝑥, 𝑦, 𝑧, 0))𝐼(𝑥, 𝑦, 𝑧, 𝑡) ,  

𝑑𝐼(𝑥,𝑦,𝑧,𝑡)

𝑑𝑡
= β𝑆(𝑥, 𝑦, 𝑧, 𝑡)𝐼(𝑥, 𝑦, 𝑧, 𝑡) + β(𝑉(𝑥, 𝑦, 𝑧, 𝑡) −

       𝑒𝑉(𝑥, 𝑦, 𝑧, 0))𝐼(𝑥, 𝑦, 𝑧, 𝑡) + (1 − 𝜂)β𝑀(𝑥, 𝑦, 𝑧, 𝑡)𝐼(𝑥, 𝑦, 𝑧, 𝑡)  

     +(1 − 𝜂)β(𝐵(𝑥, 𝑦, 𝑧, 𝑡) − 𝑒𝐵(𝑥, 𝑦, 𝑧, 0))𝐼(𝑥, 𝑦, 𝑧, 𝑡) −

       γ𝐼(𝑥, 𝑦, 𝑧, 𝑡), 

𝑑𝑅(𝑥,𝑦,𝑧,𝑡)

𝑑𝑡
= γ𝐼(𝑥, 𝑦, 𝑧, 𝑡). 

   where x, y, and z represent the strategy fractions, i.e. the 

number of individuals taking vaccination, IDM and both 

provisions at any time 𝑡, respectively. 

Figure 1. Schematics of the proposed model. 

Figure 2. Final epidemic size (panels (a-*) for four-

strategy model, panels (b-*) for three-strategy model, and 

panels (c-*) for two strategy model respectively). 



 

Figure 3. Average social payoff (panels (a-*) for four-

strategy model, panels (b-*) for three-strategy model, and 

panels (c-*) for two strategy model respectively). 

2.2 Payoff structure 

   Generally, an epidemic season continues until all 

infected individuals get fully recovered. During this course 

if a non-vaccinated individual gets infected must carry out 

the infection cost Ci. However, some extremely unlucky 

individuals who get infected despite taking either 

vaccination, IDM or both are charged with their respective 

provision cost as well as the infection cost. For 

convenience, the cost is rescaled by defining a relative cost 

of vaccination, namely Crv= Cv /Ci (0 ≤ Cv ≤1; Ci=1). 

Likewise, the relative cost of IDM; Crm and relative cost of 

combined strategy; Crb are rescaled for the payoff structure. 

Eventually, at the end of an epidemic season, each 

individual’s payoff is ensured by his/ her final state 

encapsulates in Table 2 whether committing to a particular 

provision or not as well as whether being healthy or 

infected. 

2.3 Strategy updating 

   At the end of each season, individuals are allowed to alter 

or change their current strategy based on their payoffs in 

the previous epidemic season. Here, we use the strategy-

based risk assessment (SB-RA) update rule to calculate the 

transition probabilities. 

2.3.1 SB-RA update rule 

   Fukuda et al. [2] modified the imitation probability 

proposed by Fu et al. [4] that enables each individual to 

access the risk based on a socially averaged payoff 

resulting from adopting a certain strategy. The general 

form of the transition probability is given by: 

             𝑃(𝑆𝑖 ⟵ 𝑆𝑗) =
1

1+𝑒𝑥𝑝[−(〈𝜋𝑗〉−𝜋𝑖)/𝜅]
 ,         

where, 〈𝜋𝑗〉 is the average payoff obtained by averaging the 

collective payoff over individuals who adopt the same 

strategy as that of a randomly selected neighbor 𝑗  of 

individual 𝑖. For our model we have twenty-four transition 

probabilities which can be summarized as: 

𝑃(𝐴 ⟵ 𝐵);  𝐴 ∈ {𝐻𝑉, 𝐼𝑉, … , 𝐹𝐹𝑅}; 𝐵 ∈ {𝑉, 𝑀, 𝐵, 𝐹𝑅} . 

2.4 Evolutionary system equation 

    As each individual updates his strategy depending upon 

his last season’s payoff following the SB-RA strategy 

update rule, therefore increasing or decreasing of  𝑥, 𝑦, and 

𝑧 is obvious.  

𝑑𝑥

𝑑𝑡
= −𝑥𝑦(1 + (1 − 𝑒)𝑒𝑥𝑝[−R0𝑅(𝑥, 𝑦, 𝑧, ∞)])𝑃(𝐻𝑉 ← 𝑀)  

−𝑥𝑧(1 + (1 − 𝑒)𝑒𝑥𝑝[−R0𝑅(𝑥, 𝑦, 𝑧, ∞)])𝑃(HV ← B)  

−𝑥(1 − 𝑥 − 𝑦 − 𝑧)(1 + (1 − 𝑒)𝑒𝑥𝑝[−R0𝑅(𝑥, 𝑦, 𝑧, ∞)])𝑃(𝐻𝑉 ← 𝐷)  

−𝑥𝑦(1 − 𝑒)(1 − 𝑒𝑥𝑝[−R0𝑅(𝑥, 𝑦, 𝑧, ∞)])𝑃(IV ← M)  

−𝑥𝑧(1 − 𝑒)(1 − 𝑒𝑥𝑝[−R0𝑅(𝑥, 𝑦, 𝑧, ∞)])𝑃(𝐼𝑉 ← 𝐵) − 𝑥(1 − 𝑥 − 𝑦 −

𝑧)(1 − 𝑒)(1 − 𝑒𝑥𝑝[−R0𝑅(𝑥, 𝑦, 𝑧, ∞)])𝑃(IV ← D)  

−𝑥𝑧(1 + (1 − 𝑒)𝑒𝑥𝑝[−(1 − 𝜂)R0𝑅(𝑥, 𝑦, 𝑧, ∞)])𝑃(𝐻𝐵 ← 𝑉) +

+𝑥𝑧(1 − 𝑒)(1 − 𝑒𝑥𝑝[−(1 − 𝜂)R0𝑅(𝑥, 𝑦, 𝑧, ∞)])𝑃(IB ← V)  

−𝑥𝑦 𝑒𝑥𝑝[−(1 − 𝜂)R0𝑅(𝑥, 𝑦, 𝑧, ∞)]𝑃(𝐻𝑀 ← 𝑉) + 𝑥𝑦(1 −

𝑒𝑥𝑝[−(1 − 𝜂)R0𝑅(𝑥, 𝑦, 𝑧, ∞)])𝑃(IM ← V)  

+𝑥(1 − 𝑥 − 𝑦 − 𝑧)𝑒𝑥𝑝[−R0𝑅(𝑥, 𝑦, 𝑧, ∞)]𝑃(𝑆𝐹𝑅 ← 𝑉) + 𝑥(1 − 𝑥 −

𝑦 − 𝑧)(1 − 𝑒𝑥𝑝[−R0𝑅(𝑥, 𝑦, 𝑧, ∞)])𝑃(FFR ← V)            

   In a similar fashion we can also generate the dynamical 

equations for 
𝑑𝑦

𝑑𝑡
 and  

𝑑𝑧

𝑑𝑡
. 

 

Figure 4. Fraction of population taking both (B) strategy. 

3. Result discussion 

   Let us discuss the numerical results obtained from our 

theoretical model governed by the system of Equations (1). 



 

Figure 2 provides the final epidemic size varying the 

parameter settings for different models namely, four-

strategy (panels a-*), three-strategy (panels b-*), and two-

strategy (panels, c-*). Similarly, Figure 3 indicates the 

average social payoff exactly for the same parameter 

settings and models. For the time being we limit our 

discussion by considering the effectiveness parameter 𝑒 =
{0.4, 0.6} and the efficiency parameter 𝜂 = {0.2, 0.4, 0.6}. 

Finally, Figure 4 shows the fraction of 𝑧, i.e. the strategy of 

taking both provisions at the same time. 

   Considering every parameter space continuously, a 

general tendency amid the entire population is observed 

when a large number of individuals plan to commit 

vaccination then there is a certain propensity of taking IDM 

(M) and both (B) in smaller number among the rest of the 

population and vice-versa. A further analysis reveals the 

fact that the final epidemic size is almost same for four-

strategy model and three-strategy model irrespective to the 

parameters settings shown in Fig. 2. Despite having a very 

limited scope to survive, the fourth-strategy (B) can 

somehow improve the final epidemic size which is justified 

in panels (a-1 & a-2) of Figs. 2 & 4. On the other hand, the 

average social payoff is also relatively higher when the 

fourth-strategy (B) and third-strategy (M) is being 

introduced compared to that of two-strategy (V) case 

(depicted in Fig. 3). With respect to the fourth strategy (B) 

simultaneously taking both vaccination and IDM, let us 

point out several interesting discoveries as below. One 

thing is that the cases of the lowest reliability of 

vaccination ( 𝑒 = 0.4 ) only allows the fourth strategy 

surviving. Moreover, in the region of lower vaccination 

cost and extremely lower cost of IDM, a vast majority of 

people take the fourth strategy (see the solid line boxes in 

panels (a-1), and (a-2) in Fig. 4). It seems quite conceivable. 

This is because despite vaccination might be the first 

choice to avoid disease (even if he/ she is not able to 

acquire immunity, with some probability (e) he or she can 

acquire perfect immunity), lower e pushes individuals who 

committing vaccination to take IDM additionally. Taking 

both measures is fairly conceived as a more reliable 

alternative than taking one of those two.   

   Inevitably it can be said that the introduction of IDM and 

subsequently the fourth-strategy (B) seems meaningful and 

beneficial to the mass people during their rainy days as 

long as the both the relative costs considered are relatively 

cheaper as well as both the reliabilities are considerably 

higher. 

4.  Conclusion 

   In summary, with the evolution dynamics of epidemic 

spreading and strategy imitation, our model carefully 

explored the existence of third and fourth strategies in an 

infinite and well-mixed population which can be 

considered as an extension of the two-strategy model 

proposed by Kuga et al. [11]. Our theoretical results reveal 

the fact that introduction of these two new strategies seem 

beneficial to suppress the epidemic spreading from the cost 

effective point of view.  
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