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概要

定常のレオロジー曲線を熱浴とカップルした非弾性ボルツマン方程式に基づき理論的に導出し、

シアシックニングがあることを導いた。

Abstract

The steady flow curve between the shear viscosity and the shear rate is theoretically obtained

based on the inelastic Boltzmann equation under the influence of drag friction from background

and a thermal activation. This flow curve exhibits a S-shape which suggests the existence of a

discontinuous shear thickening in this setup.

1 Introduction

Rheology of granular fluids is important in both

science and technology to control the flow of gran-

ular materials. The central concern of the rheol-

ogy is the constitutive equation between the shear

stress or the viscosity and the shear rate. The most

fundamental rheological constitutive equation for

many fluids is Newtonian in which the viscosity

is independent of the shear rate. On the other

hand, an assembly of dry granular particles obeys

Bagnold’s scaling in which the shear viscosity is

proportional to the shear rate γ̇. There are, how-

ever, many situations in which the viscosity has the

rate dependence. In particular, the shear thicken-

ing process in which the viscosity increases as the

shear rate increases attract much interest among

researchers. This process is commonly observed in

dense suspensions such as corn starch [1], but this

can be observed even in granular flows.

One of interesting recent trends is that the mu-

tual frictions between grains play important roles

in the discontinuous shear thickening ( DST) [2, 3,

4, 5, 6, 7, 8, 9]. Seto et al.[4, 5] have performed sim-

ulation for suspensions which have frictional con-

tact force based on the Stokesian dynamics and

found that there exists the DST even for such a

system. There are some similar papers which also

report important roles of frictional force between

grains [6, 7, 8]. We stress that the interstitial fluid

is no longer important for such systems to exhibit

DSTs. Therefore, DST can be studied as an inter-

esting subject of granular physics.

There are some phenomenologies to discuss the

DST [10, 11, 12, 13] in which they introduction of

the order parameter to reproduce a S-shape in a

plane of stress-strain rate (flow curve). The most

important question, however, on the origin of the

S-shape has not been answered by them. Later,

Grob et al. have examined the validity of the order

parameter model for the DST of dry frictional gran-

ular particles [14]. Therefore, one of key remaining

problems for the DST is to clarify the physical ori-

gin of the S-shape in the flow curve.

There are few theoretical papers on shear thick-

ening. One of remarkable achievements is that by
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Santos et al.[15] in which they demonstrate the ex-

istence of a continuous shear thickening in mod-

erately dense hard-core gases by using the revised

Enskog theory. Recently, the present authors have

proposed a new theory of DST based on BGK equa-

tion [16].

The purpose of this paper is to demonstrate the

existence of S-shape in the flow curve, which sug-

gests the occurrence of the DST in a dilute granular

gases associated with a drag and a thermal agita-

tion under a plane shear within the framework of

the inelastic Boltzmann equation. This model is a

simple physical model to describe a model of gran-

ular gases under vertical vibration or mixture of

granular gases in which smaller grains can be re-

garded as environmental fluid [17, 18].

2 Kinetic theory

Let us consider a collection of mono-disperse

spherical grains (the diameter σ, the mass m

and the restitution coefficient e) distributed in

d−dimensional space influenced by the background

fluid under a uniform shear flow characterized by

the macroscopic velocity field u = (ux,u⊥) under

the shear rate γ̇ as

ux = γ̇y, u⊥ = 0. (1)

Introducing the peculiar velocity V ≡ (vx−γ̇y)ex+
v⊥ with the unit vector ex parallel to x−direction
(shear direction) and the velocity v⊥ perpendicular

to x−direction as well as the microscopic velocity

v, we assume that the one-body distribution func-

tion f(V , t) under the plane shear satisfies [17](
∂

∂t
+ γ̇Vy

∂

∂Vx

)
f(V , t)

= ζ
∂

∂V
·
({

V +
Tex
m

∂

∂V

}
f(V , t)

)
+ J,(2)

where we have introduced ζ and Tex to characterize

the friction from the back ground fluid and the en-

vironmental temperature. For simplicity, we have

ignored hydrodynamic interactions such as lubrica-

tion force and long-range force between particles.

Here, the collisional integral J ≡ J(V |f) is as-

sumed to be the inelastic Boltzmann operator:

J(V1|f) = σd−1

∫
dv2

∫
dσ̂Θ(−v12 · σ̂)|v12 · σ̂|{

f(V ∗∗
1 )f(V ∗∗

2 )

e2
− f(V1)f(V2)

}
,(3)

where Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 otherwise

and V ∗∗
i = v∗∗

i −u for i = 1, 2 is the pre-collisional

velocity of Vi defined by

v∗∗
1 = v1−

1 + e

2
(v∗∗

12 ·σ̂)σ̂, v∗∗
2 = v2+

1 + e

2
(v∗∗

12 ·σ̂)σ̂
(4)

with v12 = v1 − v2. One of the most important

quantities is the pressure tensor

Pαβ = m

∫
dvVαVβf(V , t). (5)

This is related to the pressure as P = Pαα/d = nT

with the number density n =
∫
dV f(V , t), where

the last equation is valid for the inelastic Boltz-

mann equation in the dilute limit.

Now let us assume the Grad’s approximation [19,

20, 21]

f(V ) = feq(V )

[
1 +

m

2T

(
Pαβ
nT
− δαβ

)
VαVβ

]
(6)

with

feq(V ) = n
( m

2nT

)d/2
exp

(
−mV

2

2T

)
, (7)

where we have introduced the kinetic temperature

T defined by T =
∫
dvm(v − V )2/(dn) and used

Einstein’s notation for the sum rule in which du-

plicated Greek indices take summation from α = 1

to α = d. Substituting Eq. (6) into Eq. (2) with

multiplying mVαVβ and integrate it over v, we ob-

tain

∂

∂t
Pαβ+γ̇(δαxPyβ+δβxPyα) = −Λαβ+2ζ(nTexδαβ−Pαβ),

(8)

where we have introduced

Λαβ ≡ −m
∫
dvVαVβJ(V |f) (9)

When we adopt Eq. (6) it is straightforward to

show the relation

Λαβ = ν(Pαβ − nTδαβ) + γnTδαβ , (10)
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where ν and γ are, respectively, given by [21]

ν =

√
2π(d−1)/2nσd−1vTA

d(d+ 2)Γ(d2 )
(11)

γ =

√
2π(d−1)/2nσd−1vT (1− e2)

dΓ(d2 )
, (12)

where we have introduced A = 2d+ 3+ 2de− 3e2,

vT =
√
2T/m and ℓ = (nσd−1)−1 with the Gamma

function Γ(x) =
∫∞
0
dttx−1e−t. From Eq. (10) with

Eqs. (11) and (12), Eq. (8) can be rewritten as three

coupled equations:

∂

∂t
T = −2γ̇

dn
Pxy − γT + 2ζ(Tex − T ), (13)

∂

∂t
∆T = − 2

n
γ̇Pxy − (ν + 2ζ)∆T, (14)

∂

∂t
Pxy = γ̇n

(
∆T

d
− T

)
− (ν + 2ζ)Pxy,(15)

where we have introduced ∆T ≡ (Pxx − Pyy)/n

and used Pyy = P⊥⊥ with Pyy = (Pyy − Pxx)/d +
Pαα/d with the notation of P⊥⊥(= Pyy) for any

perpendicular component to x, i. e. ⊥= y, z, · · · .
It should be noted that the temperature T should

be larger than (1 + γ/(2ζ))−1Tex because of the

viscous heating.

3 Rheology

Equations (13), (14) and (15) gives a rheological

relation between the shear rate γ̇ and the viscosity

η ≡ −Pxy/γ̇. For its explicit calculation we have to

determine the form ζ. It is natural that we assume

that ζ depends on Tex, because the drag coefficient

should be larger if the temperature is higher.

Let us introduce the following dimensionless

quantities:

ν∗ =
ν√
θζ
, γ∗ =

γ√
θζ
, γ̇∗ =

γ̇

ζ
(16)

where we have introduced θ = T/Tex.

In a steady state under this condition, Eqs. (13)

and (14) are reduced to

∆T

T
=
d(γ∗
√
θ + 2(1− θ−1)

ν∗
√
θ + 2

. (17)

Substituting this into Eq. (14) we obtain the equa-

tion for P ∗
xy = Pxy/(nTex) :

P ∗
xy = − dθ

2γ̇∗

{
γ∗
√
θ + 2(1− θ−1)

}
. (18)
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図 1: Plot of the dimensionless viscosity η∗

against the shear rate γ̇∗ for e = 0.90, where
we adopt d = 3 and nσ3 = 0.01.

Then, substituting Eqs. (17) and (18) into the

steady equation of (15) we obtain

γ̇∗ = (ν∗
√
θ + 2)

√
d[γ∗
√
θ + 2(1− θ−1)]

2[(ν∗ − γ∗)
√
θ + 2θ−1]

. (19)

Therefore, the dimensionless viscosity η∗ = P ∗
xy/γ̇

∗

is given by

η∗ =
θ{(ν∗ − γ∗)

√
θ + 2θ−1}

(ν∗
√
θ + 2)2

. (20)

This model exhibits the crossover from Newto-

nian regime η∗ → θmin/(ν
∗√θmin + 2) at θ =

θmin, where θmin is a real solution of θ =

(1 + γ∗
√
θ/2)−1, to Bagnold’s viscosity η∗ →√

2/d(ν∗ − γ∗)3/2γ̇∗/(
√
γ∗ν∗3) in the high shear

rate limit θ → 2(ν∗ − γ∗)γ̇∗2/(dν∗2γ∗). Note that

ν∗ and γ∗ depend on the restitution coefficient e as

shown in Eqs. (11) and (12).

As shown in Fig. 1, the flow curve has S-shape

at intermediate γ̇∗. Then, if we gradually in-

creases/decreases γ̇∗, the viscosity η∗ discontinu-

ously increases/decreases at a certain value of the

shear rate. Therefore, this S-shape flow curve

strongly suggests the existence of the DST in this

model [22].

4 Discussion and conclusion

Let us discuss our results. First, we need simu-

lation to verify our theoretical results. This is one

of our future problem [22].
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Second, one can stress that our results are uni-

versal, though we have analyzed dilute granular

gases. Indeed, we have already demonstrated the

existence of DST behavior of a different model in

which the collision term is replaced by a relaxation

term. It is straightforward to extend the analy-

sis presented here to a moderately dense granular

gases by using Enskog equation [18]. Therefore,

the extension of the analysis presented here will be

important.

Because of the limitation of the length of this

paper, we have not discussed the linear stability

analysis of a steady state. This is not difficult.

which would be the subject in a forthcoming paper.

In conclusion, we have demonstrated the exis-

tence of S-shape flow curve which strongly suggests

the existence of the discontinuous shear thicken-

ing (DST) in granular fluid coupled with agitation

characterized by Tex and the drag force between

granular particles and the background fluid within

framework of inelastic Boltzmann equation. This

model exhibits the crossover from Newtonian vis-

cosity to Bagnold’s viscosity in which the shear vis-

cosity discontinuously changed as the shear rate in-

creases.
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