米国のハブ空港における着陸・離陸挙動の解析

伊藤 秀剛¹, 西成 活裕²

1 東京大学 工学系研究科 航空宇宙工学専攻 2 東京大学 先端科学技術研究センター

概要

本論文では、米国のハブ空港における飛行機の発着挙動の解析を行った。米国の飛行機の発着挙 動は等間隔ではなく、集中と過疎を繰り返す構造を持っている。この時、連続する二回の着陸(離 陸)の間隔を考えると、この着陸(離陸)間隔の確率分布がべき分布であらわされることがわか る。これは、人間行動や自然現象にみられるもので、バースト性と呼ばれる。また、飛行機発着 挙動のバースト性は、普遍的にベき分布の指数がα=2.5になる。この現象が空港網のスケール フリー性や乗り継ぎを促進する必要性から生まれていることを示し、バースト性を再現するモデ ルを提案した。さらに、バースト性が実際に発着の遅れや乗り継ぎへ与える影響を考察した。

Analysis of arrival and departure behavior in U.S. hub airports

Hidetaka Ito¹, Katsuhiro Nishinari²

¹ Department of Aeronautics and Astronautics, School of Engineering, The University of Tokyo ² Research Center for Advanced Science and Technology, The University of Tokyo

Abstract

We analyze arrival and departure behavior in U.S. hub airports. U.S. aircraft's arrival (departure) behavior is heterogeneous. We study a probability distribution of inter-arrival (departure) times. The distribution of inter-arrival (departure) times in U.S. hub airports universally follows a power-law distribution with an exponent $\alpha = 2.5$. This behavior is called burstiness. We show that this universality originates from airport network's scale-free property and necessity of transit facilitation. The model based on them generates a probability distribution of inter-arrival (departure) times following a power-law with the exponent. Furthermore, we analyze how bursty behavior influence on delays of aircrafts and plane connection.

序論 $\mathbf{1}$

車の交通流と共に、飛行機の交通流が近年注目さ れている。特に、空港網をネットワークであるととら え、そのネットワーク上を飛行機という粒子が輸送 されている現象であるととらえる視点により、流れ の解析が行われている。空港網を静的ネットワーク として性質を考察した多くの研究が存在し、スケー ルフリー性(一部のハブ空港に発着が集中している ことを示す)や、スモールワールド性(どの空港か

らも比較的少ない空港を経由するだけで目的の空港 に到着できることを示す)を空港網が有しているこ とがわかっている [1]。しかし、ネットワーク上の輸 送現象の観点からは研究が進んでいない状態である。 一方、ネットワークの個々のノードに注目し、イ ベントの挙動を分析する手法も近年行われている。 その中で特に関心を持たれている現象がバースト性 である。バースト性の有無を判断するためには、イ ベント間隔時間分布を用いる。これは、統計的にイ ベントの集中度合いを評価するために使われる。こ

こで、本論文においてイベントは飛行機の離陸や着 陸一回に相当する。離陸と着陸は分けて考えるため、 イベントが離陸に相当する場合もあれば、着陸に相 当する場合もある。これを統合して、イベントと呼 ぶこととする。イベント間隔時間分布について説明 を行う。連続する二回のイベントを考える。そのイ ベントの発生時間の差がイベント間隔時間である。 連続する二回のイベントは、イベントの総数をNと すれば、N-1の組み合わせが存在するため、この 数だけイベント間隔時間の値を得られる。そして、 これらの値とその発生回数を確率分布としてプロッ トを行いイベント間隔時間分布を得る。この分布が 指数分布になっていれば、イベントの発生はポアソ ン過程であると言え、この分布がべき分布になって いれば、バースト性があると判断できる。バースト 性とは、イベントの集中を意味しており、ランダム に発生する現象よりはるかにイベントの発生が偏っ ていることを示すもので、二つのイベント間隔の確 率分布がカットオフが付いたべき分布

$$
p(\tau) = e^{-\frac{\tau}{\tau_0}} \tau^{-\alpha} \tag{1}
$$

であらわされることによって表現される[2]。この性 質は、人間行動(電話の発信など)や自然現象(地 震の発生間隔)などに共通する普遍的現象である。 ここで本論文では、このような性質が飛行機の交通 流にも存在しているのかどうか、実際の発着挙動の データを解析することによって示す。また、この性 質とネットワークそのものとの関係や、飛行機の遅 延といった実務上重要な要素にこの性質がどのよう に影響するかについて解析を行う。

米国ハブ空港における離着陸挙 $\overline{2}$ 動のバースト性

2014年1月における米国運輸統計局の発着パフ ォーマンスデータ [3] を用いて、米国の主要ハブ空 港における発着陸の間隔時間の分布を考える。アト ランタ国際空港とロサンゼルス国際空港におけるイ ベント時間間隔分布が図1である。この二つの国際 空港は米国において 2014年における搭乗顧客数が 最も多い二つの空港である。灰色の実線は指数分布 である。これらのイベント時間間隔の分布は、指数 分布よりはるかにテールが長い分布となっており、 カットオフのある、指数が2.5のべき分布

$$
p(\tau) \sim e^{-\frac{\tau}{\tau_0}} \tau^{-2.5} \tag{2}
$$

図1: アトランタ国際空港とロサンゼルス国際空港 におけるイベント時間間隔分布

図 2: アトランタ国際空港の実データと提案された モデルのイベント時間間隔分布の比較

を示すことがわかる [4]。このことより、これらの二 空港において着陸と離陸の挙動はバースト性を持っ ていることが示された。また、米国ハブ空港の離着 陸挙動のバースト性はこれら主要二空港に限られた ものではなく、米国の主要ハブ空港に共通する現象 である[4]。

米国ハブ空港におけるバースト $\mathbf{3}$ 性の起因

続いて、この米国ハブ空港におけるバースト性が 何に起因しているのかを考察する。米国の空港網は スケールフリー性を有している。このスケールフリー 性と、航空交通が主要な輸送手段であることから、 ある空港から移動できる空港の数を多くする取り組 みがなされている。それが、乗り継ぎの利便性の強 化である。ある便から乗り継げる便の数を増やすた めには、その便の着陸時間から適当な時間内に多く の飛行機が離陸する必要がある。それを可能にして いるのが、バースト性を持った離着陸挙動である。

着陸と離陸を交互に集中させることによって、ある 便の着陸から一定時間後の離陸便の数を増やすこと ができる[4]。

このメカニズムにより、発着時間分布がべき性を 持つことを示すため、モデルを提案する。このモデ ルでは、前章にて言及した発着の集中を示す発着挙 動として、あるいくらかの決められた時間に多くの 飛行機が一斉に離陸を行い、同様に着陸も複数の決 められた時間に行われることとする。この着陸(離 陸)の時間を μ_i (i番目) とおく。この μ_i は実際の データを基に、着陸(離陸)が集中している時間に設 定する。ただし、これはスケジュール上の発着時間 であり、実際の発着時間は遅れなどの影響で前後す る。この遅れの影響が正規分布に従う $\mathcal{N}(\mu_{delay}, \sigma^2)$ とする。以上より、このモデルでは、ある時間tに 飛行機が着陸(離陸)を行う確率が

$$
f(t) = \sum_{i} \frac{c_i}{\sigma \sqrt{2\pi}} e^{-\frac{(x - \bar{\mu_i})^2}{2\sigma^2}}
$$
(3)

であると表すことができる。ただし、 $\bar{\mu_i} = \mu_i + \mu_{delay}$ とおいた。

このモデルで得たイベント間隔時間分布を図2に 示す。このシミュレーションにおいては、米国の便 の遅れを分析した論文 [5] を基に、 $\mu_{delay} = -2.73$ π 、 σ = 13.75 分であると定めた。黒い実線が実際 のアトランタ空港での着陸のデータであり、赤い線 がモデルで再現したものである。また、青い線は漸 近的に指数 2.5 のべき分布となる関数である。実際 のデータとモデルは非常によく一致しており、どち らもカットオフのある指数 2.5 のべき分布となって いることがわかる。このことから、乗り継ぎの利便 性を高めるために発着を集中させることを表現した このモデルが、イベント間隔時間分布が指数 2.5の べき分布となるという、米国航空交通におけるバー スト性を説明するものであるということが示された

[4]。また、着陸が集中する時間、正規分布の平均や 分散を変えてもモデルはバースト性を持つ。それは、 着陸(離陸)が集中している二つの時間帯の間が、 定数項と二次のオーダーの関数の和で表わされる限 り、バースト性が現れるからである[4]。ただし、正 規分布の分散が大きいと、着陸(離陸)確率が平坦 化されることにより、べき分布のカットオフ指数が 小さくなっていき、指数分布に近づく。また、正規 分布の分散が小さいと、着陸(離陸)が集中してい る二つの時間帯の間が、指数分布型の減衰となるた め、べき指数が2に近づく。分散を10倍、10分 の1にした結果を図2に示した。

バースト性による影響 $\overline{\mathbf{4}}$

以上の結果をふまえ、このバースト性によって飛 行機の定時性や乗り継げる便数に対して、どのよう な影響を与えるのかを考察する。

まず、バースト性による渋滞遅延への影響につい て考察する。バースト性は発着の集中を意味するた め、集中による遅延が発生する。その影響を評価す るために、実際のデータを使用した場合と、発着時 間をシャッフルした場合で遅延時間を比較する。ここ で、実際の飛行機の発着時間のデータはすでに渋滞 遅延の影響を含んでいるため使用できない。そのた め、今回の考察では飛行機の発着時間をスケジュー ルでの発着時間に正規分布に従う遅れが生じると仮 定して決定した。また、シャッフルの方法について は、120分毎に時間を区切り、その中でランダムな 時間をスケジュールの発着時間とすると定めた。こ れにより、細かい時間での集中(バースト性)は失 われるが、深夜に発着量が少ないなどのバースト性 に関係しない発着量の性質は保持される。また、空 港の発着量に容量を設定し、渋滞遅延の発生は、そ

の容量を超えた場合に渋滞が発生し遅延すると設定 した。航空容量を一分あたり $c = 2.5$ 機とした場合 の結果を図3に示す。バースト性のあるオリジナル の発着スケジュールであると、特定の時間に大きな 遅延が発生することがわかる。これによって、平均 的な遅延時間はバースト性のないシャッフルを行っ た場合と比べて増加することになる。

そこで、平均的な遅延時間と航空容量の関係を図 4に示す。この図によると、航空容量が一分あたり $c = 2.5$ 機である時、平均遅延時間はバースト性があ る場合に約一分増加し、これは42パーセントの増加 に相当する。バースト性がある場合に、バースト性 がない場合と同じ平均遅延時間に抑えるためには、 航空容量を一分間に 0.1 機増加させる必要がある。 また、天候が悪くなると航空容量が減少する。この 時の遅延について考察すると、どのような観点から 議論を行うかにより、結果の解釈が異なる。平均遅 延時間の差の観点からは、平均の遅れは航空容量の 減少に対して指数関数的な増加を見せるため、バー スト性がある場合の影響は大きくなると言える。し かしながら、同じ平均遅延時間に抑えるために必要 な航空容量の観点からは、バースト性がある場合と ない場合における平均遅延時間の比が1に近づくこ とから、バースト性の影響は小さくなると言える。 これは、バースト性による短い周期での飛行機発着 の集中よりも、長期間にわたる発着容量の超過によ る遅延の影響が大きくなるためである。

次に、乗り継ぎできる便数について考察する。あ る便を利用して空港に到着した乗客が乗継できる便 数は、便の到着から45分から75分の間に離陸する 便の数ということとする。これ以上短い時間は乗り 継ぎに失敗する可能性が高く、逆に乗り継ぎ時間が 長いと乗り継ぎが行われないため、この時間を最適 な乗り継ぎ時間と設定した。実際に、米国の乗客の 乗り継ぎ人数の分析 [6] によると、この乗り継ぎ時 間での乗り継ぎ数が多いことがわかり、乗り継ぎに 最適であると判断されていることがわかる。図5が 乗り継ぎできる便数を表したグラフである。横軸は 月初めの便を1として数えて、何便目に空港に到着 した便かを表している。この図からわかるとおり、 バースト性があると乗り継ぎできる便数が増減する。 これは、発着が集中している時間帯の便は乗り継げ る便が多いことを示す。この効果によって、乗り継 ぎ可能な便の数の平均値は増加することがわかる。

図5: 到着した便から乗り継ぎできる時間内に離陸 する便の数

$\overline{5}$ 結論

本論文では、空港での飛行機の発着挙動にみられ るバースト性について、その有無、原因、そして影響 について解析した。バースト性により着陸(離陸)間 隔時間分布はべき分布であらわされ、この性質は空 港網の性質と乗り継ぎの必要性によって生まれてい ることが、モデルによって再現された。また、バース ト性によって遅延時間は増加するが、乗り継ぎ可能 な便数は増加していることがわかった。この性質が 航空システムにとって有益かどうかはさらなる検証 が必要である。これは、今後の課題としていきたい。

参考文献

- [1] Roger Guimera, Stefano Mossa, Adrian Turtschi, and LA Nunes Amaral. Proc. Natl. Acad. Sci. USA, 102(22):7794-7799, 2005.
- [2] Albert-Laszlo Barabási. Nature (London), 435(7039):207-211, 2005.
- [3] Bureau of Transportation Statistics (BTS). http://www.transtats.bts.gov/, 2014.
- [4] Hidetaka Ito and Katsuhiro Nishinari. arXiv preprint arXiv:1508.07862, 2015.
- [5] Eric R Mueller and Gano B Chatterji. In AIAA aircraft technology, integration and operations $(ATIO)$ conference, 2002.
- [6] Cynthia Barnhart, Douglas Fearing, and Vikrant Vaze. Oper. Res., 62(3):580-601, 2014.