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概要

生物集団の一般モデルとして Swarm Oscillatorsという数理モデルが田中ダン氏により提案され
た。これはスパイラル状及びターゲット状の凝集過程を示すことから、キイロタマホコリカビの
ような化学物質のスパイラル波を出しながら集まる過程を表現できると期待されると考えた。本
論文ではこの現象を解析するための計算手法を提案する。凝集過程の初期段階のシナリオを説明
するとともに、対象数理モデルで現れる波の波長、スパイラルの場合は回転角速度のモデルを決
めるパラメータに対する依存性を明らかにした。
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Abstract

A General representation of a collective motion ”Swarm Oscillators” was derived by D.Tanaka
in 2007. The model shows aggregation movement accompanied by a spiral and target pattern
wave, which is important in the case of real organisms such as Dictyostelium.To understand
this behavior, we proposed how to analyse the spiral and target aggregation movement in this
paper in a manner similar to that of Kuramoto model. It’s shown that the senario of the first
term of the aggregation process can be expressed by this model. And parameter dependence of
a wavelength and rotation speed in spiral wave case, and that of a wavelength in target wave
case is also clearified in this paper.

1 Introduction
Understanding of a collective motion of organ-

isms with mathematical model is one of the most
important topics in physics and information sci-
ence. Various type of population can be our target
such as fish, birds, slime molds and so on. [1]
To discuss such a collective motion in a gen-

eral and mathematically reasonable way, D.Tanaka
derived a normal form which represents a wide
variety of collective motions, that is, ”Swarm
Oscillators”.[2] Up to the choice of the parameters,
we can make various types of behaviors in silico
with this model. For instance, a motion like a flow-
ing liquid, an ordered cristal, an aggregation move-
ment with target and spiral pattern phase wave,
what’s more, a motion like a flexible membrane
and an irregular motion can also be made. Con-
sidering the strategy of population , it seems no-
tably important to focus on aggregation process.
D.discoideum, which is one of cellular slime molds,
grows as being separate under plenty of foods. In
a bad condition such as starvation, they take a ef-
ficient strategy of migration. Forming a multicel-
lular mold, changing to slug like shape, and mov-
ing to another place like as an individual.[3] Al-

though this model seems fruitful, investigation of
the model is far from satisfactory. In this paper,
we proposed how to construct the solution of the
aggregation movement accompanied by spiral and
target pattern phase wave in this model. We got a
quantitative and qualitative result of a relation be-
tween ”wave length and wave propagation speed”
and ”molds’ transfer movement”.

2 Methods & Results
2.1 Summary of Swarm Oscillator
The Swarm Oscillator model was derived from a

general ”Chemotactic Oscillators”; a general model
of population of cells in which each cells can com-
municate each other using a signal of some chemi-
cal substance. It was derived by a manipulation of
phase reduction under a hypothesis of Hopf bifur-
cation. His result was given as follows.

dθµ
dt

=
∑

ν(!=µ)

e−|rνµ| sin (θνµ + α |rνµ|− c1) ,

drµ
dt

= c3
∑

ν(!=µ)

e−|rνµ| rνµ
|rνµ|

sin (θνµ + α |rνµ|− c2) .
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particle index:µ, ν ∈ {1, · · ·N} with θνµ := θν−θµ,
rνµ = rν − rµ variables: rµ ∈ Space, θ ∈ [0, 2π] ≈
S1, t ∈ R constants: c1, c2 ∈ S1, c3 > 0,α > 0 We
can choose any smooth manifold as a ”Space”. To
make discussion simplifier and to compare the re-
sult of previous works, we chose 2 dimensional Eu-
clidian space R2 for calculation and 2 dimensional
torus T 2 for computer simulation. In this paper,
we call a space as ”plane” for this reason. When a
correlation length is short enough in comparison to
a system size, we can regard both case as an almost
same situation. For our target phenomena, the ag-
gregation wit target and spiral pattern wave, which
is a local event, this treatment can be justified well.

2.2 Continuation of Swarm Oscilla-
tors

In this chapter, we propose a continuous ver-
sion of Swarm Oscillators (a Vlasov equation of
Swarm Oscillator). Spiral and Target pattern wave
can be observed when adequately many particles
are filled in the plane. Hence a continuation of
the equation should be the reasonable first step of
analysis. Stems from a large deviation theory, we
can expect a same behavior as seen in the orig-
inal discrete system. To be accurate, if we use
this type of continuation,discrete one will converge
weakly to the continuous one as N → ∞. Here
we introduce a density function ρ in Space×S1 as
ρ(t, r, θ) =

∑
µ δ(r − rµ)δ(θ − θµ). With this den-

sity function, we can derive a following continuous
version of Swarm Oscillators.

∂ρ

∂t
= −Dζ(t, r, θ)e−iθ + c.c,

D :=
c̃3e−ic̃2

2

∂

∂r
ρ(t, r, θ)

∂

∂r
+

e−ic̃1

2

∂

∂θ
ρ(t, r, θ)

∂

∂θ
,

ζ(t, r) :=

∫
dt′dr′dθ′ρ(t, r′, θ′)g(r′ − r)eiθ

′
(1)

g(r) := exp ((−1 + iα)|r|). D operates linearly in
a smooth function space, ζ is a mean field express
the extracellular condition. And parameters are
replaced as c̃1 = c1, c̃2 = c2+tan−1(−α)+π/2,c̃3 =
c3/

√
1 + α2.

2.3 Multi Timescale Perturbation
Using a manipulation of multi timescale pertur-

bation, we can divide a dynamical equation which
describes the phase wave and the particle migration
movement. By M.Iwasa and R.Ishiwata’s work[4],
the value of the parameter c3 was estimated to be
in the order of 10−1 in the case of D.discoideum.
The parameter c3 is a rate of a time scale difference
between the cell movement and the phase change.
Hence it’s reasonable to consider that the dynam-
ics of the phase is much faster than that of the cell
migration.

According to the treatment of a multi timescale
perturbation, we introduce a couple of different
scale time variables (t0, t1) = (t, c3t) ,which is fast
clock and slow clock respectively. We consider that
these two times t0 and t1 are independent, and we
can expand the density function rho with c3 as fol-
lows.

ρ(t0, t1, r, θ) = ρ0(t0, t1, r, θ) + c3ρ0(t0, t1, r, θ) + · · · .

Comparing each order of the equation, we got fol-
lowing sequential equations. The 0th order is coin-
cident with a locally coupled Kuramoto oscillators
[5].

0th Order :
∂ρ0
∂t0

= −e−ic̃1

2

∂

∂θ
ρ0

∂

∂θ
g̃ · ρ0 + c.c,

1st Order :
∂ρ1
∂t0

+
∂ρ0
∂t1

= −e−ic̃2

2

∂

∂θ
ρ0

∂

∂θ
g̃ · ρ0 + c.c.

g̃(r, θ) := g(r)e−iθ and the product”·” means a con-
volution integral with respect to r and θ. If we
integrate the r.h.s of the 1st order equation with
respect to the fast time t0, it will diverse in a order
of O(t0). As we can see in a numerical simulation,
this type of divergence does not appear. To re-
move this unphysical divergence, we introduced a
following renormalization group equation.[6]

RG equation :
∂ρ0
∂t1

= −e−ic̃2

2

∂

∂r
ρ0

∂

∂r
g · ρ0 + c.c. (2)

This RG equation (2) decides a slow dynamics, that
is, the transfer of the particles.

2.4 Solution of the 0th order eq.
Aforementioned, the 0th order equation is same

with the Kuramoto equation. We derived following
self consistent equation in the usual treatment of
the Kuramoto equation. [5] We divided the density
function into two states; a phase locked state and a
phase drifting state, which are corresponding to the
phase synchronized and the phase unsynchronized
states respectively. Then we can derive a follow-
ing closed equation, with that we can calculate the
mean field ζ =: R exp(i(Θ + iΩ)). A parameter
Ω(r) here we introduce is a macroscopic angular
frequency. Center dot means convolution product.

R(r)eiΘ(r) = ie−ic̃1

∫
dr′S(r′)g(r − r′)eiΘ(r′)





Ω(r′)

R(r′)
−

√(
Ω(r′)

R(r′)

)2

− 1




 . (3)

S is a particle distribution in the plane at time t1.
To make an appearance simpler,we abbreviated the
dependence of R and Θ on slow time variable t1.
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With a following ansatz of the wave form which was
used by D.S.Cohen et.al[7], we got the solution of
this equation (3).

spiral : R(r) = R(|r|),Θ(r) = f(|r|) + tan−1
(y
x

)
,

target : R(r) = R(|r|),Θ(r) = f(|r|).

For make our discussion and calculation easier,
let’s restrict our discussion to the case that par-
ticles are uniformly distributed in the plane. The
solution of the equation (3) under this condition is
shown in figure (1), figure (3) and (2). From these
figures, we can find that R(r) and f(r) = Θ(r)−Ωt
don’t depend on c̃1 and that Omega can be approx-
imated by one degree polynominal of c̃1 in both
spiral pattern and target pattern case.
We can deduct density dependence of R(r), f(r)

and Ω from this result. Let (3) deformed to follow-
ing form.

R̃(r)eiΘ(r) =

(
iρe−ic̃1

Ω

)∫
dr′g(r − r′)eiΘ(r′)





1

R̃(r′)
−

√(
1

R̃(r′)

)2

− 1




 . (4)

R̃ is defined by R̃(r) = R(r)/Ω Let the mean den-
sity rho substituted to χρ, we can keep the equa-
tion same by replacing Ω with χρ. And also the
solution ”R̃, Θ” keeps. This invariance means that
R and Ω are proportional to the density ρ.
We note that an unti-direction spiral wave gives

a same result because the equation (3) has a space
inversion symmetry and the direction of the spi-
ral is determined by the initial condition. On the
other side, a solution of a negative phase velocity
Ω < 0 can also exist in the condition c̃1 is large.
Transformation c̃1 → 2π − c̃1 changes a signature
of a square root term of the equation 3. We can
construct the solution of negative Ω solution by the
inversion of c̃1 from the solution of positive Ω so-
lution. We also found the fact that phase velocity
profile and wave length profile are almost same be-
tween the cases of spiral pattern wave and target
pattern wave for some reason.

2.5 Particle Flux
Calculation of the particle flow is one of the most

important information in order to compare the re-
sult with an experimental results. Here we propose
how to calculate a vector field of a density weighted
velocity, that is, a flux field. Substituting the phase
dynamics factor which was calculated in the previ-
ous section to the RG equation2, we can calculate
the mean field ”ζ”. The flux is determined by the
gradient of ζ. See the equation (2). Substituting
the result of ζ in previous sections to the equation
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図 1: The above figure shows the c1 dependence
of R(|r|) and f(|r|) = Θ−Ωt of the spiral wave.
An above left figure is a graph of R(|r|), an
above right figure is f(|r|) = Θ(r, t)− Ωt, a be-
low left figure a 2d graph of R(r), and an below
right figure is a 2d graph of Theta(r)−Ωt. From
these figures, we can see that the functions R
and f are universal for any choice of the param-
eter c̃1. And the center area of the R(r)(|r| 0)
is sharply narrow.
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図 2: The above figure shows the c1 dependence
of R(|r|) and f(|r|) of the target wave. From
these figures, we can see an universality as is
also seen in the spiral pattern wave. The center
of the target pattern is ambiguous than that of
the spiral pattern.
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図 3: The above figure shows the c1 profile of
wave length and phase velocity Ω. The left fig-
ure is those of spiral pattern wave and the right
one is those of target pattern wave. From this
figure, we can see that the phase velocity Ω can
be fitted by one polynominal function of c̃1 and
that the wave length has a constant value for
all c̃1 in both wave case. It’s notable that the
wave length and phase velocity of both cases are
almost same.
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図 4: The figure shows the vector field of the
particle velocity. The left figure is the flux vec-
tor field corresponding the spiral pattern wave,
a right figure is that of the target pattern wave.
From these figures, we can see, in case of spiral
pattern wave, the flux is large near the center
point of the wave, . On the contrary, in the
case of target wave, that is small. And the flux
is globally larger in the case of spiral pattern
wave, than target one. This result implies that
the particles can migrate more effectively with
spiral wave pattern.

(2), we can get the flux. We show the result in
figure (4). We can see the flux of the aggregation
with spiral pattern wave is much faster than that of
target pattern wave. This result imply that spiral
wave pattern is more effective signal than target
pattern wave for the aggregation process.

3 Discussion & Future Work
In this paper, we especially focus on the first

term, so the study of the middle term is the most
accesible future work. Through my calculation, the
senario of the aggregation process especially the
relation between the wave and migration, got clear.
We note that when we distribute the particles ho-

mogeneously in the plane, the first period of the ag-
gregation process is driven by phase gradient.And
in middle term of aggregation, when particles are
assembling to the center of the pattern, the aggre-
gation process is driven by the phase gradient in a

far area from the center and by the gradient of the
particle density near the center. In late term, the
senario of aggregation is considered to be driven by
only the density gradient. The particles are concen-
trated and emerged at the center. My continuous
theory can be applied to the first and middle term
of the aggregation process.
And aforementioned, we noted that my multi

time scale perturbation theory is not completed.
Replacing the constant Ω by some appropriate
function Ω(t1, r), In rough evaluation(S(r) ≈ ρ +
∇S(r0) · (r − r0)), Ω can be defined as satisfying
the c̃1 −Ω graph and proportional relationship be-
tween density and Ω. Here we propose a candidate
of (R,Θ,Ω) for general value of the density ρ.

R(r; c̃1)e
iΘ(r;c̃1) = Ω(r; c̃1)R̃flat(r; ρ = 1)eiΘflat(r;c̃1,ρ(r))

Ω(r; c̃1) = ρ(r)Ωflat(c̃1, ρ = 1),

Θ(r; c̃1) = Θflat(c̃1, ρ = 1),

With this hypothesis, we can get the equation in
which phase dynamics are projected to the center
attractor manifold. It’s my future work to proof
of this hypothesis or construct a solution of fast
dynamics solution in another analytical way.
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