渋滞現象の大域分岐構造からの理解

佐合洋彰¹, 友枝明保^{2,3}, 三村昌泰²

1 明治大学大学院 理工学研究科 基礎理工学専攻
 2 明治大学先端数理科学インスティチュート
 3 (独) 科学技術振興機構 CREST

概要

心理作用という新しい変数を導入した交通流連続モデルを紹介する.このモデルは非線形偏微分 方程式系で記述され,線形安定性解析による空間一様平衡解の安定性やそれを補う数値計算結果 から渋滞流の出現について報告する.

Global bifurcation understanding of the traffic flow

Hiroaki Sago¹, Akiyasu Tomoeda^{2,3}, Masayasu Mimura²

¹ Department of Science and Technology, Graduate School of Fundamental Science and Technology, Meiji University

> ² Meiji Institute for Advanced Study of Mathematical Sciences ³ CREST, Japan Science and Technology Agency

Abstract

We present the traffic flow model, which introduces the new variable, amount of information. This model is described by a system of nonlinear partial differential equation, we discuss the stability of spatially constant equilibrium solution linear stability analysis, fundamental diagram and numerical simulations.

1 はじめに

交通渋滞は多大な経済損失を与えており、国土交 通によれば、渋滞損失額は年間約12兆円となる。こ れらの渋滞を解消することが出来れば、経済損失を抑 えることができ、また環境問題の面でも軽減される。

現在までに、交通流モデルの中でも、車を巨視的 に捉えた連続モデルは昔から多く研究されてきた [1],[5]. 近年では、CA モデルや OV モデルといった 車を離散的に扱うモデルを用いて解析もなされてい る [2],[3],[4],[7].

PW モデルでは,渋滞流の伝播が進行波解を用い て解析されている [6].ここでは,連続モデルを用い ることから,渋滞流の伝播が進行波解を用いて解析 する.本研究の目標は,不安定解を捉え,解析を行 うことである.不安定解に摂動を与えることで,自 由相と渋滞相のどちらに移りやすいかが分かる.そ の結果を用いて,渋滞発生を防ぐような方法を考え, 渋滞解消へと繋げたいと考えている.

現在の密度の大きさや密度勾配から受ける心理作 用が速度を決定すると仮定し、心理作用という新し い変数を導入した連続モデルを提案する.

2 心理作用を導入したモデル

我々は、「ドライバーは現在の密度の大きさと前方 の密度差(密度勾配)から受ける心理作用をもとに 速度を決定する」と考える.ここでは、心理作用に より、走りたい欲求が生じると考えている.現在の 密度や前方が混んでいれば、走りたいという欲求は 低下し、速度もそれに伴い低下する.逆に、現在の 生まれ、速度を上げる、したがって、心理作用の影 [8]. フェヒナーの法則とは、「心理的な感覚量は、刺 響を受けて速度を決めるが、速度は密度と密度勾配 から得る欲求の線形和から定義する。ここで重要な のは、現在の密度の大きさや密度勾配から心理作用 の影響を受ける際、時間遅れが生じると考えること である。密度や密度勾配を受け、瞬時に心理作用の 影響を受けるとは考えにくく、ある程度の時間遅れ が生じると考えるのが妥当である。

空間 x,時間 t とし,密度を $\rho(x,t)$,速度を v(x,t), 流量をq(x,t)とする.このとき、それぞれ車の台数 保存則,基本関係式として,

(2.1) $\rho_t + q_x = 0,$

$$q = \rho v \tag{2.2}$$

が成り立つ。我々はモデリングにおいて、

- 1. ドライバーは密度と密度勾配から、心理作用の 影響を受ける
- 2. それらの心理作用の影響を判断する際に、時間 遅れが発生する
- 3. 速度は心理作用の線形和で決まる

と仮定する.現在の密度,密度勾配から受ける心理 作用をそれぞれ $c_1(x,t), c_2(x,t)$ とすると,速度 v は, 仮定3より,

$$v = \alpha c_1 + \beta c_2, \quad \alpha, \beta > 0 :$$
 (2.3)

とする. (2.1), (2.2), (2.3) より,

 $\rho_t + ((\alpha c_1 + \beta c_2)\rho)_x = 0$

が得られる。また、仮定1.2より、

$$\begin{cases} \tau_1 c_{1t} = a_1 h(\rho) - b_1 c_1, \quad (2.5a) \\ \tau_2 c_{2t} = -a_2 (\log \rho)_x - b_2 c_2, \quad (2.5b) \end{cases}$$

とする. ここで, τ_1, τ_2 は時間遅れ, $a_1, a_2, \alpha, \beta, b_1, b_2$

はパラメータ, $h(\rho)$ は密度に対してある心理作用の 影響を与える関数である.

(2.5a)の左辺は、時間遅れ r₁を含む時間変化、右 辺第1項は,現在の密度から受ける心理作用を h(p), 第2項は減衰項である。減衰項は、心理作用が薄れ ることを意味している。時間が経つにつれ、心理作 用が薄れる影響をこの項は表している.

(2.5b)の左辺は、時間遅れ T₂を含む時間変化、右 辺第1項は,前方の密度差から受ける心理作用,第 2項は減衰項である。右辺第1項が対数の空間変化

密度や前方が空いていれば、走りたいという欲求が で入っているのは、フェヒナーの法則を用いている 激の強度ではなく、その対数に比例して近くされる」 ことである。すなわち、前方の密度勾配を対数に比 例して心理作用の影響を受けると仮定している.

> (2.4), (2.5a), (2.5b) より, 我々の提案するモデ ルは.

$$\begin{cases} \rho_t + ((\alpha c_1 + \beta c_2)\rho)_x = 0, \\ \tau_1 c_{1t} = a_1 h(\rho) - b_1 c_1, \\ \tau_2 c_{2t} = -a_2 (\log \rho)_x - b_2 c_2, \end{cases}$$
(2.6)

となる.

本論文では、密度勾配よりも密度の方が渋滞に影 響を及ぼすのではないかと考え、密度勾配から受け る心理作用の影響に関しては瞬時に判断するという 状況を考える. すなわち, (2.6) で, $\tau_2 \rightarrow 0$ とした 簡易化したモデル

$$\begin{cases} \rho_t + (\alpha c_1 \rho)_x = \frac{\beta a_2}{b_2} \rho_{xx}, \\ \tau_1 c_{1t} = a_1 h(\rho) - b_1 c_1, \end{cases}$$
(2.7)

を考える. (2.7) に対して、変数変換 $\frac{\beta a_2}{b_2} = D, \frac{a_1}{b_1} =$ $a, \frac{\tau_1}{h_1} = \tau$ を施すと,

$$\begin{cases} \rho_t + (c_1 \rho)_x = D \rho_{xx}, \\ \tau c_{1t} = ah(\rho) - c_1, \end{cases}$$
(2.8)

が得られる。今回の発表では、道路長 L の周期境界 条件を課した, (2.8) で表されるモデルについて得ら (2.4) れたいくつかの結果について発表する.

2.1 $h(\rho)$ の関数形

先ず, h(ρ)の関数形について述べる.

h(ρ) はある密度に対して、心理作用の影響を与え る関数である。密度によってどれくらい走りたいか という心理作用を与える関数は、OV 関数と類推し ていると考え,ここでは,

$$h(\rho) = \frac{1}{1 + \exp\left(\frac{\rho - 0.55}{0.66}\right)} - 3.72 \times 10^{-6} \quad (2.9)$$

とする [2]. (図 2.1 参照)

自然渋滞は空間一様平衡解に対する摂動が不安定 化することから起こると考えて, 先ず空間一様平衡 解の安定性を線形安定性解析から考察する。

3 線形安定性解析

(2.8) の一様平衡解を (ρ^*, c_1^*) とする. ここで, ρ^* は任意正定数, $c_1^* = ah(\rho^*)$ である. この解に微小 摂動を与える.

$$\rho(x,t) = \rho^* + \xi(x,t),
c_1(x,t) = c_1^* + \eta(x,t).$$
(3.1)

(3.1)を(2.8)に代入し、線形化すれば、

$$\begin{cases} \xi_t + \rho^* \eta_x + c_1^* \xi_x = D \xi_{xx} \\ \tau \eta_t = a h'(\rho^*) \xi - \eta \end{cases}$$
(3.2)

を得る. ここで,

$$\xi(x,t) = A_k(t) \exp(ikx)$$

$$\eta(x,t) = B_k(t) \exp(ikx)$$
(3.3)

とする. ただし, $A_k = a_1 + ia_2$, $B_k = b_1 + ib_2$. (3.3) を (3.2) に代入して整理すると,

$$X' = PX \tag{3.4}$$

となる.ただし,

$$X = \begin{pmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \end{pmatrix}, P = \begin{pmatrix} -k^2 D & kh & 0 & k\rho^* \\ kh & -k^2 D & -k\rho^* & 0 \\ \frac{a}{\tau}h' & 0 & -\frac{1}{\tau} & 0 \\ 0 & \frac{a}{\tau}h' & 0 & -\frac{1}{\tau} \end{pmatrix}.$$

行列 P の固有多項式は,

$$\begin{split} \lambda^4 &+ \left(2Dk^2 + \frac{2}{\tau}\right)\lambda^3 \\ &+ \left(h^2k^2 + d^2k^4 + \frac{1}{\tau^2} + \frac{4Dk^2}{\tau}\right)\lambda^2 \\ &+ \frac{2k^2}{\tau}\left(\frac{D}{\tau} + h + Dk^2 + ah'h\rho^*\right)\lambda \\ &+ \frac{k^2}{\tau^2}\left(h^2 + D^2k^2 + 2ah'h\rho^* + a^2{h'}^2\right) = 0 \end{split}$$

となり、全ての固有値 λ が負となるとき、 (ρ^*, c_1^*) は漸近安定である.

空間一様平衡解の安定性を、横軸が時間遅れ、縦 軸が密度でプロットしたのが図 3.1 である.図 3.1 か ら、 τ が小さいときには、渋滞が起きにくいことが 予想される.また、 τ を適当に固定し、 ρ を大きく すると、安定、不安定、安定と安定性が変化する.

図 3.1: 安定性グラフ (D = 0.1, L = 10)

4 シミュレーション結果

ここでは、不安定な一様平衡解に摂動を与えた時、 どのような解が出現するのかをシミュレーションに よって考察する。パラメータの値は、以下の通りで ある。 $L = 10, a = 1.0, D = 0.1, \tau = 0.2, \rho^* = 0.5, dx = 10^{-2}, dt = 2.0 \cdot 10^{-4}$.

図 4.1 から図 4.2 が,各時刻での数値計算結果で ある.赤が ρ ,青が c_1 で, ρ に摂動を与えてある.不 安定領域でのパラメータでは、一様平衡解に摂動を 与えたとき、時間経過の後に不安定化し、空間非一 様な進行波が現れる.また、図 4.3、図 4.4が揺らぎ の成長過程と十分時間が経ったときの時空図(縦軸 が時間、横軸が空間)である.十分時間が経ったと き、不安定化によって生じる解は、時空図より、一 定の速度で後方へ進むことが分かる.

渋滞の移り変わる過程を調べるために,安定性が 切り替わる0固有値付近を詳しく調べる.

5 大域分岐構造

横軸に平均密度,縦軸に渋滞速度の絶対値とした 分岐図が図 5.1 である.ここで,渋滞速度は数値計 算で以下のように求めた.

まず,渋滞流と直線 y = a(渋滞流と2点で交わるように a を定める)の交点 (x_i, ρ_i) を求め,微小時間 dt 後に同様にして (x_i^*, ρ_i^*) を求める.そして, $\frac{x_i^* - x_i}{dt}$ で渋滞速度を求めた.

図 5.1 において,平均密度 0.4 付近で,ヒステリ シスが起きていて,2つの安定な一様平衡解,進行 波解が共存している.

不安定解の存在を調べるために,以下に示す2つ の異なる初期値で数値計算を行った.図5.2の初期 値(a)よりも図5.3の初期値(b)の方がより一様解 に近い初期値となっている.

図 5.2, 図 5.3 を初期値としたとき,それぞれ図 5.4, 図 5.5 のような時空図が得られる.

図 5.2 の初期値 (a) のときは,進行波となり,図 5.3 の初期値 (b) としたときは,一様解となる.した がって,初期値に依存して進行波,一様解の双方が 確認されることから,不安定解が存在するのではな いかと考えられる.

6 基本図

(2.8)のモデルの基本図が図 6.1 である.基本図は, 十分時間が経ったときの,安定な解における密度と 流量の平均をそれぞれプロットした.

分岐理論より、メタ安定領域 (0.35 < ρ < 0.45 付 近) では自由相と渋滞相が双安定である。分岐解が どちらの相に移りやすいかが、今後の研究課題であ る渋滞現象を理解する上で重要になると考えている。

7 結論

本稿で提案した心理作用という新しい変数を導入 したモデルは,OV モデルと類似したモデルである ことから,線形安定性解析,基本図は,先行結果と 似たような結果が得られた.

しかし,渋滞流に関しては,進行波解析によって 多くの情報が得られると考えている.

参考文献

- M.J.Lighthil et.al. Proc.R.Soc.A **229**,281(1955)
- [2] M.Bando et.al., J.Phys. I France 5,1389(1995)

Red : P(x,t), Blue : C1(x,t

図 5.2: 初期値 (a)

Red : P(x,t), Blue : C1(x,t

図 5.4: 時刻 0-30.0, 進行波の発生

図 5.5: 時刻 0-30.0, 一様解に収束

- [3] M. Bando et.al., Phys. Rev. E **51**,1035(1995)
- [4] K. Nakanishi et.al., Phys. Rev. E 55,6519(1997)
- [5] B.S.Kerner et.al., Phys.Rev. E, 48R2335(1993)
- [6] Tong Li, Physica D **207**,41-51(2005)
- [7] K.Nagel et.al., J.Phys.I France 2,2221(1992)
- [8] M.Makoto, IEEE Communications Magazine, 51(1988)

