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Abstract

Swarm-oscillators model derived by one of the authors (DT) is a dynamical system for many
interacting motile oscillators which exhibits various kinds of ordered structure. Here we
particularly focus on cluster structures in the model. For one-dimensional system, we see all
stable static structures in a particular but large set of parameters. For two-dimensional one,
we relate parameter values in the model to the form of clusters.

1 Swarm Oscillators Model

Cluster formation is one of the main characteristics in self-organizing systems such as the traffic flow sys-
tem, internal network of genes and proteins in a bacterium, simple robots employing swarm intelligence
and nano-devices with bottom-up approach. Various models exhibiting clusters have been proposed
and analyzed to date[1, 2, 3, 4, 5]. In this letter, we investigate one of them, Swarm oscillators model
(simply referred to as SO model in what follows) derived by one of the authors (DT)[6], and discuss
cluster structures arising in the model. SO model is a dynamical system which describes interacting
motile oscillators as follows:

ψ̇i =
∑

{j|j 6=i}

e−|~Rji| sin (Ψji + α|Rji| − c1) , (1)

ṙi = c3

∑
{j|j 6=i}

R̂jie−|Rji| sin (Ψji + α|Rji| − c2) . (2)

Here, ψi and ri denote the phase and the position of i-th oscillator respectively (i = 1, · · · , N for
N oscillators system). The over-dot represents differentiation with respect to time. Rji := rj − ri,
Ψji := ψj − ψi (mod 2π), R̂ji := Rji/|Rji|. There are four real parameters, 0 ≤ c1 < 2π, 0 ≤ c2 < 2π,
0 ≤ c3 and 0 ≤ α. A few results of numerical simulations are shown in Fig. 1 all of which show cluster
structures although many other kinds of patterns emerge in this model.

2 Two-Oscillators System

To understand the collective behavior in SO model, the best strategy is to investigate the most basic
version of SO model first of all, that is two-oscillators system. By setting δ := ψ2 − ψ1 (mod 2π) and
ρ := r2 − r1, we derive SO model for two-oscillators system as follows:

δ̇ = −e−ρ cos(αρ − c1) sin δ, (3)
ρ̇ = c3e−ρ sin(αρ − c2) cos δ. (4)

We immediately find the fixed points of this system, (δ0, ρ0), as follows:

(δ0, ρ0) =
(

0,
c2 + pπ

α

)
or

(
π,

c2 + pπ

α

)
, p ∈ Z; (5)
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Figure1: Examples of two-dimensionally spreading cluster structure (left and middle) and an example of
one-dimensionally spreading cluster structure (left) in SO model in two-dimensional space.

and

(δ0, ρ0) =
(

π

2
,

2c1 + π + 2qπ

2α

)
or

(
3π

2
,

2c1 + π + 2qπ

2α

)
, q ∈ Z. (6)

According to the linear stability analysis around each fixed point, we find out that stable fixed points
appear if and only if cos(c1 − c2) > 0. Those points are (δ0, ρ0) = (0, c2+pπ

α ) for even p, and (δ0, ρ0) =
(π, c2+pπ

α ) for odd p. This means that the distance between oscillators takes discrete values labeled
by p, and the phase difference takes 0 or π depending on the value of p. As we see later, this feature
remains in many-oscillators system. In contrast, if cos(c1 − c2) ≤ 0, both the phase difference and the
distance continue to oscillate temporally.

3 One-Dimensional System

Next we concentrate on more complex but basic version, that is one-dimensional system. Particularly,
we consider a simple case, c1 = c2 =: c. Results of numerical simulations are shown in Fig.2. We
see fractal-like cluster structures there. By defining distances and phase differences between adjacent

Figure2: Examples of cluster patterns in one-dimensional swarm oscillators model.

oscillators, ρi := ri+1 − ri and δi := ψi+1 − ψi, SO model reads

ψ̇i =
i−1∑
j=1

e−
Pi−1

k=j ρk sin

α
i−1∑
k=j

ρk −
i−1∑
k=j

θk − c

+
N−1∑
j=i

e−
Pj

k=i ρk sin

(
α

j∑
k=i

ρk +
j∑

k=i

θk − c

)
, (7)

ṙi =−c3

i−1∑
j=1

e−
Pi−1

k=j ρk sin

α
i−1∑
k=j

ρk −
i−1∑
k=j

θk − c

+c3

N−1∑
j=i

e−
Pj

k=i ρk sin

(
α

j∑
k=i

ρk +
j∑

k=i

θk − c

)
.(8)

For the sake of clear discussion, we introduce the ‘renormalized’ expression of SO model. That is,

ψ̇i = A−
i−1e

−ρi−1 sin(αρi−1 − θi−1 − c − κ−
i−1) + A+

i e−ρi sin(αρi + θi − c − κ+
i ), (9)

ṙi = −c3A
−
i−1e

−ρi−1 sin(αρi−1 − θi−1 − c − κ−
i−1) + c3A

+
i e−ρi sin(αρi + θi − c − κ+

i ), (10)
i = 1, · · · , N.
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Here, we define A−
0 = A+

N = 0 for clear and simple representation. Both A−
i and κ−

i (i = 1, · · · , N − 1)
are the functions with respect to {ρ1, . . . , ρi−1, θ1, . . . , θi−1}, and both A+

i and κ+
i (i = 1, · · · , N −1)

are those with respect to {ρi+1, . . . , ρN−1, θi+1, . . . , θN−1}. Note that obviously A−
1 = A+

N−1 = 1
and κ−

1 = κ+
N−1 = 0. In other words, Eq. (9) and Eq. (10) indicate that interaction with oscillators

further than nearest neighbors are renormalized into {A} and {κ}. After a straightforward calculation,
we find out that the fixed points can be formally written as

ρi =
1
2α

[
2c + nπ + (κ+

i + κ−
i )

]
, n ∈ Z; (11)

θi =
1
2
(κ+

i − κ−
i ) or

1
2
(κ+

i − κ−
i ) + π. (12)

Omitting the detailed discussion in this letter, since ρi is large enough in usual case, we can assume
that {A} and {κ} is sufficiently close to 1 and 0 respectively. Under this condition, by ordinary linear
stability analysis, it is shown that the phase difference between adjacent oscillators which takes distance
labeled by even n or odd n is as nearly 0 or π respectively. In other words, the minimal clusters consist
of oscillators whose distance labeled by n = 0 where phase of those oscillators are almost the same. The
second smallest clusters consist of those minimal cluster all of which are placed apart from another in
the distance labeled by n = 1. Then the phase difference between them is almost π. In the same way,
we find that fractal-like cluster structures arise (Fig. 3).

n=1
n=2
n=3

n=0

Scale of distance
between elements

Figure3: Schematic figure of fractal-like cluster structure appearing in particular one-dimensional SO model.

4 Two-Dimensional System

What we are interested in next is cluster patterns in two-dimensional space. According to the numerical
simulations, oscillators form two-dimensionally spreading cluster as shown on the left and the middle in
Fig.1 for some parameter sets, or one-dimensional alignment as shown on the right in Fig. 1 for some
other sets. To reveal the condition of the emergence of these patterns, we investigate three-oscillators
SO model where regular triangle patterns and line pattens arise as shown in Fig. 4. Results of numerical

Figure4: The line alignment and the regular triangle arising in three-oscillators system.

simulations to see the dependence of the appearance of those patterns on c1 are shown on the left in
Fig. 5. This result reflects two-oscillators system, that is to say, static configurations arise only when
cos(c1 − c2) > 0, which corresponds to c1 < 2.57 and 5.71 < c1 in Fig. 5. For the purpose stated
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above, we focus on the range cos(c1 − c2) > 0. For three oscillators, structure formations are roughly
explained as follows: In general, three distances between oscillators are different from each other. The
closer oscillators interact stronger than the others. Then, the closer two pair go to stable fixed points
as if they were two-oscillators system. In this way, an isosceles triangle are firstly formed. After that,
oscillators move to a regular triangle or a line. A result of a numerical simulation supports this picture
(right figure in Fig.5).

Next, we focus on the transition between regular triangle patterns and line patterns. By a straightfor-
ward calculation, we can immidiately show both line patterns and regular triangle patterns are solutions
of SO model for all parameter values. Therefore, which pattern appears is determined by their stabili-
ties. With ordinary linear stability analysis, we find out that regular triangle patterns are stable if and
only if sin(c1−c2−γ) > 0, where cos γ = 1√

25c2
3α2+1

and sin γ = 5c3α√
25c2

3α2+1
. This condition corresponds

to c1 < 2.73 or 5.51 < c1 in Fig.5. In the same way, we can find out that line patterns are stable if
and only if sin(c1 − c2) > 0, which corresponds to 1.00 < c1 < 4.14 in Fig.5, under the appropriate
approximation such that we neglect the interaction between both edges of the line.
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Figure5: (Left) The histogram of static line patterns and static regular triangle patterns for numerical
simulations under the condition c2 = c3 = α = 1.00 for 100 trial. Oscillators are randomly distributed
initially but close to each other enough to construct minimal size of stable patterns. (Right) The same
histogram for specific initial states in the range of 1.00 < c1 < 2.50 under the same set of parameters.
Initial positions are isosceles triangle and all of initial phase are idintical. Its vertex angle is changed
from π

3
to π in steps of 2π

300
.

Omitting the detailed explanation in this letter, we can observe by numerical simulation that os-
cillators form two-dimensionally spreading cluster structures (shown on the left and the middle in Fig.
1) in the range of regular triangle phase, or they form one-dimensionally spreading cluster structure
(shown on the right in Fig. 1) in the range of line phase. Therefore, it is confirmed that the condition
for the formations of regular triangle patterns and line patterns reflects to the cluster formation in
more-oscillators system.
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