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Abstract

内部自由度と空間自由度を持つ素子群が相互作用によって構造創発する系として、自己駆動型結
合振動子系の一つである swarm oscillatorsモデルを解析する。このモデルでは、振動素子群が、
四つの実パラメータやシステムサイズ、素子数に応じて、様々な時空パターンを形成する。本論
では、それらパターンの中でも空間二次元における円状パターンに着目する。このパターンでは、
ほとんどの素子はダイナミックに変化する円状に配置し、残った少数の素子がその円に囲まれる
という複雑な挙動を示す。我々はこのパターンが観察されるパラメータを特定し、その形成メカ
ニズムを説明する。またこのパターンは、あるパラメータ範囲では、安定なリミットサイクル軌
道に漸近する。このとき、素子群は同心円上に配置され、対称性の良いパターンを成す。
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Abstract

Swarm oscillators model is a normal form of a general chemotactic model of oscillators. Each oscillator
in this model has internal and spatial degrees of freedom, and there exists a nonlinear coupling between
oscillators that depends on their internal states. The model exhibits a rich variety of spatio-temporal
patterns depending on its four real-parameters, the system size and the number of oscillators. In this
paper, we concentrate on a circular pattern. In this pattern, some oscillators exhibit a circular alignment,
and the other oscillators are surrounded by the circular alignment. We study a parameter region where
the pattern is observed, and we explain the formation mechanism of the pattern. We also report that the
pattern becomes a symmetric steady final state in a particular set of parameters.

1 Introduction

A system constructed of many simple elements, such
as bacteria [1], self-driven particles [2], and nodes on
network, can exhibit several collective patterns. These
patterns have collective functions of the system, such as
chance for survival of cellular slime molds, ant colony
optimization, and swarm intelligence of many simple
robots. Collective behavior provide both of robustness
and flexibility for the systems. In this paper, we study

a model of motile oscillators, which we call swarm os-
cillators model [3][4]. The model was derived from a
general chemotactic model of oscillators by the means
of center manifold reduction and phase reduction meth-
ods at a multiple bifurcation point:

ψ̇i = ∑
i�= j

e−|R ji | sin(Ψ ji + α|R ji|− c1), (1)

ṙi = c3 ∑
i�= j

R̂ jie
−|R ji| sin(Ψ ji + α|R ji|− c2). (2)
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ψi：Phase of oscillator i
ri：Position vector of oscillator i
Ψ ji ≡ ψ j −ψi：Phase difference between oscillator i
and j
|R ji| = |r j −ri|：Distance between oscillator i and j

R̂ ji ≡ R ji
|R ji |：Unit vector of r j −ri

The model exhibits a rich variety of spatio-
temporal patterns depending on the four real parame-
ters c1,c2,c3,α , the system size L, and the number of
oscillators N. In this study, we concentrate on a cir-
cular pattern observed in two-dimensional space in the
neighborhood of c1 = 1.3,c2 = 3.0,c3 = 0.02,α = 0
(fig.1). In this pattern, some outer oscillators exhibit a
circular alignment, and the other inner oscillators are
surrounded by the circular alignment. Spatial position
of all oscillators varies with time. The outer oscilla-
tors and inner oscillators partly replace each other. The
outer circular alignment exhibits a rather symmetric cir-
cle for a while (typically, left top of fig.1), then a rather
collapsed circle (typically, right bottom of fig.1), and
repeat it with time. We call this pattern ‘dynamic cir-
cular pattern’ or briefly ‘DC pattern’ in the following.
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Figure1: Typical snapshots of ‘dynamic circular pat-
tern’ (DC pattern). Gray scale represents phase of
oscillators. 1:t = 0, 2: t = 25, 3: t = 50, 4: t = 75, 5:
t = 100, 6: t = 125. N = 30.

2 Neighboring phases

In order to study the formation mechanism of DC pat-
tern, we draw two phase diagrams on the parameter
space of c1 and c2 by using numerical simulations.
First and second phase diagrams are drawn by using
the order parameter ‘variance of phase’ < (< ψ i >
−ψi)2 > and ‘average of distance to the nearest oscilla-
tor’ < min j |ri −r j| > respectively, where the brackets
< · · · > denote average over label of oscillators i and
time t. To ignore the effect of transient, we use the

average time from t = 5000 to t = 10000. The other
conditions are as follows: number of oscillators N = 20
and system size L = 10 with periodic boundary condi-
tions. The two phase diagrams are shown in fig.2. By
using combination of whether the oscillators synchro-
nize and of whether the oscillators are distributed in the
entire space, the parameter space of c1 and c2 is roughly
divided to four regions labeled by A-D with the bound-
aries c1 = π/2,c1 = 3π/2,c2 = 0, and c2 = π . The
labels of A, B, C, and D correspond to typical patterns
A, B, C, and D respectively shown in fig.3.
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Figure2: Phase diagrams with contour lines of the
value of (a) variance of phase and (b) average of dis-
tance to the nearest oscillator. DC pattern is observed
in the neighborhood of shaded regions. The labels of
A, B, C, and D correspond to typical patterns shown
in fig.3.
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Figure3: Typical patterns in region A(c1 = 0.5,c2 =
1.5), B(c1 = 3.0,c2 = 2.0), C(c1 = 6.0,c2 = 4.0), and
D(c1 = 4.0,c2 = 4.0). c3 = 0.02,α = 0. N = 30. In
the patterns A and C, the oscillators synchronize. In
the patterns B and D, the oscillators do not synchro-
nize. In the patterns A and D, the oscillators are dis-
tributed in the entire space, but in C and D, they do
not.

Although many-body problems are difficult in gen-
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eral, analyzing two-oscillator system, we explain how
the parameter space is divided to the four regions. First,
we consider the phase difference between the two oscil-
lators Ψ ≡ψ2−ψ1. Substituting α = 0 into eqs.(1) and
(2), we obtain the equation

Ψ̇ = −2e−R sinΨcosc1. (3)

This equation implies that the interaction of phase is
attractive (repulsive) when cosc1 is positive (negative).
In fact, the oscillators are synchronized in the regions A
and C (desynchronized in the regions B and D) where
cosc1 is approximately positive (negative). Next, we
consider the distance between the two oscillators R ≡
x2 − x1, where xi ≡ R̂21|t=0 · r1. The dynamics of R
obeys the equation

Ṙ = 2c3e−R(R/|R|)cosΨsinc2. (4)

This equation implies that the interaction of position is
attractive (repulsive) when cosΨsinc2 is negative (pos-
itive). Because the sign of cosΨ is equal to that of
cosc1 as shown in eq.(3), the oscillators aggregate (sep-
arate) when cosc1 sinc2 is negative (positive), which is
approximately the case of the the regions B and C (A
and D).

3 Dynamic circular pattern (DC
pattern)

We explain how DC pattern is exhibited in the parame-
ter region A by using the above results of two-oscillator
system. DC pattern sustains its dynamical behavior re-
peating the following four steps (1)-(4). In this param-
eter region, the nearby oscillators tend to synchronize,
and a synchronized cluster appears (1). Because the
synchronized oscillators tend to separate, some oscilla-
tors on an edge of the cluster separate from the cluster
(2). The separate oscillators are desynchronized due to
the interaction that decays exponentially with the dis-
tance (3). The desynchronized oscillators return to the
cluster that moves randomly in space (4).

4 Static circular pattern (SC pat-
tern)

In a particular set of parameters, DC pattern becomes
a symmetric steady final state (fig.4), which we call
‘static circular pattern’ or briefly ‘SC pattern’. In this
pattern, some outer oscillators exhibit a circular align-
ment, and the other inner oscillators are surrounded
by the circular alignment, which is the same as in
DC pattern. The difference of SC pattern from DC
pattern is such that the spatial distribution of oscil-
lators is static and symmetric. In SC pattern, the

spatial distribution of oscillators, the diameter, and
the number ratio between the outer and inner oscilla-
tors, vary depending on initial values even if the num-
ber of oscillators and the parameters are the same.
For example, we show two different patterns in fig.4,
which are obtained under the same conditions other
than initial values. The outer and inner oscillators are

Figure4: Typical ‘static circular pattern’ (SC pattern).
c1 = 1.3,c2 = 3.0,c3 = 0.02,α = 0,N = 50. The
number ratio between the outer and inner oscillators
is different depending on initial values; 42/8 in the
left and 41/9 in the right.

entrained with a constant phase difference θ . This
θ is approximately proportional to the number ratio
k ≡(Num. of outer osc./Num. of inner osc.) shown in
fig5(a). The interactions between outer oscillators and
between inner oscillators are repulsive. In contrast,
the interactions between outer and inner oscillators are
asymmetric such that the outer (inner) oscillators exert
a repulsive (attractive) force to the inner (outer) oscil-
lators as illustrated in fig.5(b). All these interactions
balance, and the oscillators are spatially fixed in sym-
metric distributions.

In order to study the formation mechanism of SC pat-
terns, we concentrate on simpler SC patterns in which
the number of inner oscillator is one (fig.6). Because
c3 = 0.02 � O(1), |ṙi|(= O(c3)) is much smaller than
|ψ̇i|(= O(1)). (Note that all variables and parame-
ters are dimensionless quantities because the model,
eqs.(1) and (2), are normalized [3]. ) Using this fact,
we ignore the time derivative of position of oscilla-
tors, i.e., we approximate the dynamics of phase of
outer and inner oscillators as ψ̇o = −Rio sin(θ + c1)−
Roo sinc1, ψ̇i = Roi sin(θ − c1), where ψo and ψi repre-
sent phase of outer and inner oscillators respectively,
Rio ≡ ∑inner osc. j e

−|R jo|, Roo ≡ ∑outer osc. j e
−|R jo |, Roi ≡

∑outer osc. j e
−|R ji|. θ = ψo −ψi obeys

θ̇ = Rio sin(−θ − c1)−Roi sin(θ − c1)+Roo sin(−c1).
(5)

Substituting the numerically observed values Rio =
0.25,Roo = 1.05,Roi = 2.03 to eq.(5), we find unique
stable fixed point θ = 0.53. This value is equal to
the numerically observed value θ = 0.53. (Here we
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observe all numerical values to two places of deci-
mals.) This agreement supports that the above semi-
analytical argument sheds light on the formation mech-
anism of SC pattern: Once DC pattern exhibits an ap-
proximately symmetric distribution of oscillators, the
phases of oscillators are rapidly entrained satisfying a
stable value of θ . This rapidness is due to the fact that
the phase velocity is much larger than the spatial ve-
locity (c3 � O(1)). In this way, SC pattern is exhib-
ited, in which asymmetric interactions between oscilla-
tors balance. However, it remains the unsolved prob-
lem of when and how DC pattern exhibits an approxi-
mately symmetric distribution of oscillators. Although
this should be related sensitively to the parameter val-
ues, we do not yet reveal it. For example, for the pa-
rameter values c1 = 1.3,c2 = 3.0,c3 = 0.02,α = 0.0,
SC pattern is exhibited within about t = 20000. In con-
trast, for the slightly changed parameter values c1 =
1.33,c2 = 2.92,c3 = 0.02,α = 0.0, SC pattern is not
exhibited at least by t = 107, and DC pattern seems to
be final state in this case. Preliminary results suggest
that the parameter region for DC pattern is narrower
than that for SC pattern (fig.7).
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Figure5: (a) Approximately proportional relation be-
tween the phase difference θ and the number ratio k.
(b) Interactions in SC pattern. Filled and checked cir-
cles represent the outer and inner oscillators respec-
tively (see text).

Figure6: A simpler SC pattern. N = 9.
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Figure7: Phase diagram. □ for DC pattern , ○ for
SC pattern , and × for the others . c3 = 0.02,α =
0.0,N = 30. We use tentatively t = 20000 as a tran-
sient time.

5 Conclusion

We study ‘dynamic circular pattern’ (DC pattern) ex-
hibited by a model of motile oscillators, which we call
swarm oscillators model [3]. We show phase diagrams
on the parameter space of c1 and c2, which is roughly
divided to four parameter regions. DC pattern is ob-
served in the neighborhood of boundaries of the pa-
rameter regions. Analyzing two-oscillator system, we
explain how the parameter space is divided to the four
regions. DC pattern is exhibited due to a feedback loop
in interactions between oscillators. In a particular set of
parameters, DC pattern asymptotically approaches to a
symmetric steady final state which we call ‘static cir-
cular pattern’ (SC pattern). SC pattern is exhibited due
to a balance of asymmetric interactions between oscil-
lators.
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