引力のある2次元最適速度模型における歩行者流の不安定性

中山章宏¹, 長谷部勝也², 杉山雄規³

¹ 琉球大学 理学部 ² 愛知大学 経営学部 ³ 名古屋大学 情報科学研究科

概要

引力を導入した2次元最適速度模型において、一様流の不安定性を線形解析とシミュレーションを用いて 調べた。その結果新しいタイプの不安定性が存在することがわかった。

Instability of Pedestrian Flow in 2D Optimal Velocity Model with Attractive Interaction

Akihiro Nakayama¹, Katsuya Hasebe², Yūki Sugiyama³

¹ Department of Physics and Earth sciences, University of the Ryukyus
 ² Faculty of Business Administration, Aichi University
 ³ Department of Complex Systems Science, Nagoya University

Abstract

We incorporate an attractive interaction in two dimensional optimal velocity model and investigate the stability of homogeneous flow by the linear analysys and numerical simulations. There exists a new type of instability in this model.

1 はじめに

我々は歩行者やある種の生物(以下では粒子と書 く)の集団運動を記述する模型として、2次元最適 速度模型を提案した。粒子間の相互作用が反発力の みである場合、この模型は歩行者流の振舞を記述す るものと考えることができる。この場合の性質はす でに解析済みであり、一様流は高密度で不安定にな ることがわかっている。また、対向流の場合に生じ るレーン形成状態からブロッキング状態への遷移も 同じメカニズムで統一的に理解できる[1]。

本研究では、上記の模型に引力も含めた場合につ いて考える。歩行者間に引力が存在するかどうかは 不明であるが、生物集団の運動まで広げて考えると、 群れを作る生物には遠距離において引力が存在する。 ここではそのような模型を考える手始めとして、歩 行者模型にそのまま引力を導入した場合の振舞につ いて議論する [2]。

2 模型

2次元最適速度模型は次の式で表わされる。

$$\vec{x}_{j}(t) = a \left[\left\{ \vec{V}_{0} + \sum_{k} \vec{F}(\vec{r}_{kj}(t)) \right\} - \vec{x}_{j}(t) \right] (1)$$

$$\vec{F}(\vec{r}_{kj}) = f(r_{kj})(1 + \cos\theta) \vec{r}_{kj}/r_{kj}$$
(2)

ここで

$$f(r_{kj}) = \alpha[\tanh\beta(r_{kj}-b)+c] \qquad (3)$$

と仮定する。相互作用が引力か斥力かはパラメタ cの値で決まる。c = -1が斥力のみの場合を表わす。 (1)式での総和を有限にするため、c > -1の場合は 適当な距離で相互作用をカットオフしなければなら ない。以後の数値計算では線形解析と同じ状況にな るように適切な値をセットする。

3 線形解析

(1) 式には三角格子構造を持つ自明な一様流解が ある。その解の安定性を線形解析を用いて調べる。 線形化された方程式は

$$\ddot{x}_{j} = \sum_{k} [A_{k}(x_{k} - x_{j}) + B_{k}(y_{k} - y_{j})] - \dot{x}_{j}$$

$$\ddot{y}_{j} = \sum_{k}^{k} [C_{k}(x_{k} - x_{j}) + D_{k}(y_{k} - y_{j})] - \dot{y}_{j}$$
(4)

となる(感度パラメタaの扱い、 A_k, B_k, C_k, D_k の 詳細については参考文献[1]を参照)。kについての 和は最近接粒子6個について取るものとする。この 方程式のモード解は

$$x_j = \epsilon_1 \exp[i\omega t + i(kX_j + mY_j)] \qquad (5)$$

$$y_j = \epsilon_2 \exp[i\omega t + i(kX_j + mY_j)] \qquad (6)$$

と書け、これを(4)式に代入することにより、

$$-\epsilon_1 \omega^2 = \epsilon_1 \bar{A} + \epsilon_2 \bar{B} - i\epsilon_1 \omega \tag{7}$$

$$-\epsilon_2 \omega^2 = \epsilon_1 \bar{C} + \epsilon_2 \bar{D} - i\epsilon_2 \omega \tag{8}$$

が得られる。ここで $\bar{A}, \bar{B}, \bar{C}, \bar{D}$ は(4)式での和を取ったものを表わす。(7),(8)式は原理的には解くことができるが($\epsilon_2/\epsilon_1 \ge \omega$ について解き、安定条件を見れば良い)、複雑になるだけなので、ここでは数値計算による結果を示す。

図 2 において、c > -1の場合では安定 - 不安定 境界は3つの曲線からなる。中央と左側の曲線は、 反発力のみの場合にわかっていた、x 軸方向の縦波 $(\epsilon_2 = 0)$ と横波 $(\epsilon_1 = 0)$ に対する安定条件と重な る。右側の曲線は引力のある場合にのみ現れ、実は 直線である。これは楕円偏極モードに対応し、解析 が複雑になる。数値シミュレーションにより、この モードでも長波長モードが不安定化することがわか る。そこで先に波長 $(k, m \rightarrow 0)$ の極限をとっ

図 2: 数値解。曲線の上側が安定な領域である。

て、式を簡略化すると、 $\bar{A}, \bar{B}, \bar{C}, \bar{D} << 1$ であることがわかる。その結果、

$$\frac{\epsilon_2}{\epsilon_1} = \frac{1}{2\bar{B}} \left\{ -(\bar{A} - \bar{D}) \pm \sqrt{(\bar{A} - \bar{D})^2 + 4\bar{B}\bar{C}} \right\} (9)$$

$$\omega = i(1 + \overline{A} + \epsilon \overline{B}), \quad -i(\overline{A} + \epsilon \overline{B}). \quad (10)$$

となる。 $\bar{A} + \epsilon \bar{B} << 1$ なので、不安定モードは(10) 式の2番めの部分からしか現れない。すなわち

$$\bar{A} + \epsilon \bar{B} > 0 \tag{11}$$

が安定条件となる。実際にこの条件を解くと、解は 2本の直線となり、そのうち1本が図2の右側に現 れる直線と一致する。

4 相図

線形解析の結果を用いて相図を示す。

これは c = -1 の場合である。楕円モードによる 不安定境界線は1つは他のモードと同じ位置(表1 参照) 1つは無限遠にあるため、シミュレーション ではそのモードは見えない。Sは一様流が安定な領 域、L は縦波モードだけが不安定、T は横波モード だけが不安定な領域を示す。

c = 0の場合は、楕円モードの境界線は1つが露わになり、このモードによる不安定性を見ることができる(Eで表わされる領域)。

c = 1の場合は、横波その他のモードによる不安 定領域が $r \sim 0$ に縮小し、遠距離、近距離の両側で 楕円モードによる不安定領域だけとなる。

	c = -1.0	c = 0.0	c = 1.0
<i>y</i> 横	0.59 < r	0.47 < r	0.0 < r
<i>y</i> 横	0.94 < r	0.73 < r	0.0 < r
楕円	0.94 < r	0.73 < r < 1.39	0.42 < r < 1.12
y 縦	1.05 < r	0.78 < r	0.0 < r

表	1:	c =	-1, 0, 1	の場合のその他のモー	ドの安定条件
---	----	-----	----------	------------	--------

5 シミュレーション

c = 0 の場合に行なったシミュレーションの結果 を図6に示す。線形解析による結果と一致している。 x 軸方向の縦波、横波の励起はシミュレーションで も明白であるが、楕円モードについては見ただけで はそれほど明らかではない。

なお、図6に示してあるスナップショットのうち、 縦波と楕円モードが励起されているものはシミュレー ションの早い段階であり最終状態は異なる。縦波の 場合は図7のようになる。

図 7: 縦波が不安定な場合の最終状態の例

一方、楕円モードが不安定な場合の最終状態は、 引力をどこでカットオフするかによって異なる。図 8 は c = 0 で r = 3 で引力をカットした場合の例で ある。各クラスタ内では r = 1、すなわち引力も斥 力も働かない中立的な距離で三角格子を構成する。 クラスタ間の距離は r > 3 となっている。

図 8: 楕円モードが不安定な場合の最終状態の例

図 6: *c* = 0 の場合の相図とシミュレーションの比較

6 まとめ

ここでは、引力を含めた 2 次元最適速度模型にお いて、一様流の安定性について調べた。その結果、 楕円モードに起因する新しい不安定性が見つかった。 この不安定性は直感的には明らかである。遠距離で 引力、近距離で斥力ならば、その間の力の働かない 位置に安定な状態が存在することは自明なように思 われる。しかし、図 5 でわかるように、c = 1の場 合(中立な位置は $r \sim 0$ である)でも、楕円モード の安定領域は $r \sim 1$ に存在する。すなわち OV 関数 f(r)の勾配の急な領域に安定領域がある。OV 関数 による相互作用はバネに例えることができるが、そ の場合大きい勾配はバネ定数が大きいことに相当す る。したがって、強いバネでつながっている時に安 定になるということになる。

このモデルは歩行者の運動を表わす模型として考 えられているが、生物の集団運動に対しても適用で きる可能性がある。この模型ではすべての粒子が正 の x 軸方向に向いて運動することを仮定している。 微生物のような特に移動方向の定まっていない運動 をする場合は、この仮定を外さなければならず、そ の場合の安定性の性質は全く異なる。しかし、気流 に乗って飛ぶ鳥や海流に乗って移動する魚など、一 つの特別な方向がある場合には、この模型がそのま ま適用できる。今回の解析で明らかになったことは、 低密度側すなわち疎らな状態での運動は不安定で、 その場合、より高密度な群れをいくつかつくった方 が安定になるということである。生物の群れ形成は これと同様のメカニズムで説明できるかもしれない。

謝辞

本研究の一部は文部科学省科学研究費補助金基盤 研究(C)(課題番号:18540409)の研究助成を受けて いる。

参考文献

- A. Nakayama and K. Hasebe and Y. Sugiyama, Phys. Rev. E **71** (2005) 036121.
- [2] A. Nakayama and K. Hasebe and Y. Sugiyama, to be published.