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1. Introduction

Animal packing in social aggregations is of funda-
mental interest in ecology, and their conformations
have been extensively studied. Parr [23] conducted
pioneer tank observations of pelagic �shes (herring,
sprat and mackerel), and noted the \persistently uni-
form density" of a school. Pitcher and Partridge [26]
validated that all the �sh in a school occupy a vol-
ume proportional to Nb3, where N is the number of
�sh and b is the mean nearest-neighbor distance (ap-
proximate to the mean �sh-body length) in the school.
Many models for social aggregations, however, pre-
dict that densities increase as the group size (in num-
ber) increases (overviews of such models are given in
Ref. [27]). Mogilner et al. [17] mathematically tack-
led this problem of constant density and revealed the
condition for a well-spaced group, i.e. what class of
mutual interactions result in a relatively constant in-
dividual distance in the interior of the aggregate.
More recently, by means of underwater acoustics,

the school sizes (in number or biomass of �sh) have
been quantitatively measured for di�erent values of the
dimensional size of schools in the wild. Precise data
on conformations of large-sized schools of pelegic �shes
became available rapidly, which were extremely helpful
in elucidating a certain geometric law, i.e. the relation
between dimensional and biomass sizes of pelagic �sh
schools, bringing about some important changes in our
viewpoints. Misund and colleagues [1, 8, 10{15] found
that the power-law scaling in dimension-to-biomass re-
lationship exists, and is robust across a broad range of
pelagic species (anchovy, herring, mackerel, pilchard,
saithe, sardine, sprat, etc.) as well as across diverse
environments. They demonstrated that if the biomass
N in a school is, say, doubled, the cross-sectional area
of a school is increased by a factor 22� , i.e. the radius
R of the school scales as

R = (constant)�N� (1)

and that the exponent � looks universal, reading 0:5
(from the �eld data � ranges from 0:415 to 0:77). The
geometric law they found implies that the mean den-
sity of a school scales as N1�3� in three dimensions
of space and the conformation of social aggregations
swells (i.e. � > 1=3). N , denoting the school biomass,
is hereafter de�ned by the number of �sh in a school.
It might come as a surprise that packing densities

decrease as the group size increases, contrary to pre-
vious observations and predictions. Laboratory obser-
vations for school packing structure have been made
exclusively in small tanks. In all set-ups, the fac-
tors resulting in homogeneous, cohesive school may
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be especially pronounced. Pitcher and Parrish [25]
claimed that homogeneity in schools has been over-
emphasized. In situ observations of pelagic �sh schools
revealed that the packing structure within the schools
is rather heterogeneous, and even empty vacuoles have
been recorded [4, 9, 16]. Besides arti�cial environments
in small tanks, the discrepancy in former observations
could have been caused by too small numbers of �sh
in the schools. For instance, in Ref. [26], N takes a
few tens of �sh. Since such a geometric law above is
always de�ned only in a certain limit [2], the scaling
in the dimension-to-biomass relationship is expected
to hold for large-sized schools of pelagics.
In this paper, the exponent � is estimated according

to the established universal scaling law in the school-
size distribution of pelagic �shes [20, 21]: choose the
suitable value of � to achieve the best data-collapse
on the size distributions in terms of the school dimen-
sion. Notice that the dimension-to-biomass relation-
ship is a property of the single school and the scaling
exponent � is determined by the (social) interaction
between �sh, while the scaling in the school-size dis-
tribution emerges from the inter-school interactions at
population level.

2. Scaling in school geometry

The biomass distributionsW (N) follow a power law
with exponent � = 1 up to a cut-o� size hNiP ,

W (N) = N��P (N=hNiP ) ; (2)

where P (x) is a crossover scaling function with a
strong drop for x > 1, and the cut-o� size (crossover
size from power-law to exponential decay) is calcu-
lated from the biomass histogram data f(Ni;Wi)ji =
1; 2; : : :g,

hNiP =

P
iN

2
i Wi�NP

iNiWi�N
; (3)

where histogram bins are chosen with width �N .
The dimension data of �sh schools are binned

with width �R, giving the set of frequencies��
Ri;W

(G)

i

��� i = 1; 2; : : :
	
. From Eqs.(1) and (2), the

distribution of geometric dimensions of �sh schools is
represented as

W (G)(R) = R�1P (G) (R=hRiP ) ; (4)

where
hRiP = hNi�P ; (5)

and
P (G)(x) = P (x1=�): (6)

Therefore, the school-dimension distribution follows
a power law with the same exponent \�1" as the



school-biomass distribution. The power-law distribu-
tionW (G)(R) is truncated at a cut-o� size hRiP , which
is also calculated from histogram data of school geo-
metric dimensions,

hRiP =

"P
iR

2=�
i W

(G)
i �RP

iR
1=�
i W

(G)
i �R

#�
: (7)

The following normalizations are adopted for the scal-
ing function P (G)(x) and the histogram data of geo-
metric dimensions of �sh schools, because the cut-o�
size hNiP is proportional to the total number of �sh
in the school system [20, 21, see also Eq.(18)]:Z

1

0

x1=��1P (G)(x)dx = 1; (8)

and X
i

R
1=�
i W (G)

i �R = hRi1=�P ; (9)

respectively.
Since the size hRiP depends on the exponent � fol-

lowing Eq.(7), so that we can determine the value of �
by evaluating the location of the cut-o� in the power-
law distribution W (G)(R). I make use of the data col-
lapse to extract the exponent. From Eqs.(4) and (8),
when y = W (G)hRiP is plotted against x = R=hRiP
with correct parameter �, all the empirical data should
collapse onto each other. The power-law exponent
of school-dimension distributions, �, is then evaluated
through data collapse. Let us search for the value of �
that places all the points most accurately on a single
curve. We use a set of histogram data of vertical di-
mension of Japanese sardine Sardinops melanostictus
schools, from 22 acoustic surveys by Hara [7] o� south-
eastern Hokkaido for seven years, 1981{1987. Hara [6]
reported that Japanese sardine migrate as a huge-sized
school in number from a few hundreds of thousands to
a few million of �sh. To obtain the best data collapse,
the x-axis is divided into bins (Fig.1a), and for each
bin two-dimensional variance

� = (�x=�x)
2
+ (�y=�y)

2
(10)

is calculated, where �x and �y denote the standard
deviation of the mean �x and �y, respectively. The
parameter � is then estimated at value that mini-
mize the mean of two-dimensional variance for the bins
(Fig.1b). The mean of two-dimensional variance, �, is
a measure to determine the goodness of collapse [21].
A good data collapse can be obtained by using the
value � � 0:6. The resulting plot of empirical school
data is shown in Fig.1a. Experimentally �tting the
parameter � to achieve a good data collapse, \3=5",
is reminiscent of the Flory value of the exponent in a
power-law dependence of the coil radius of a polymer
chain (in three-dimensional solutions) on the degree of
polymerization [2].

3. FSS in school-biomass distributions

The acoustic-survey data are converted into a
school-biomass histogram as follows

W (N)�N /W (G)(R)R1=��1�R: (11)
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Figure 1: Data collapse to extract the exponent �.
(a) Scaled distribution of geometric dimensions of sardine
schools. y = W (G)hRiP is plotted versus x = R=hRiP
with � = 0:6 on double-logarithmic scale. The bins
are chosen equally spaced on a logarithmic scale as x 2h
10�1+k=5; 10�1+(k+1)=5

�
with k = 1; 2; : : : ; 6. The rectan-

gle in gray reads the interval �y � �y, i.e. the error �y on
the mean �y (indicated by the slit) for each bin. The solid
line is a prediction of the mean-�eld theory [20]. (b) The
mean of two-dimensional variance, �, versus the power-law
exponent �. Although � shows noisy 
uctuations, it takes a
minimum around � = 0:6. Data from Ref. [7] are analyzed.

We now crosscheck the value of � through �nite-size
scaling (FSS) analysis of school-biomass distribution
[21]. Since the �nite population size causes the trun-
cation of power-law distribution W (N) / N�� , there
is a well-de�ned quantity

L =

P
iN

1+�
i Wi�NP

iN
�
i Wi�N

; (12)

which depends on the system population size. In order
to characterize the �nite size e�ects, FSS hypothesis
is used: the distribution function depends on N only
through the ratio N=LA,

W (N ;L)dN = L�BF
�
N=LA

�
d
�
N=LA

�
; (13)

where F (x) is a universal function independent of �sh
population size. The prefactor L�B is required to en-
sure the normalizationX

i

N�
i Wi�N = 1; (14)

where P (N) [� N�W (N)] now represents the prob-
ability distribution of school-biomass sizes. From the
FSS hypothesis, it is expected that when WLA+B is
plotted against N=LA with correct parameters A and
B all the data collapse onto a single curve. The power-
law exponent of biomass distributions, �, is then eval-
uated through FSS analysis. The value of B=A is the
estimate of the power-law exponent �. Let us ana-
lyze a set of 22 acoustic-survey data of sardine schools
(same as Fig.1) converted into biomass histograms by
using Eq.(11) with � = 3=5. In a simultaneous best-
�tting procedure (Fig.2), a good data collapse can be
obtained by using the values A � 1 and B � 1. The
power-law exponent derived from the FSS collapse is
� � 1. The resulting plot is shown in Fig.2a. The
school-biomass distribution follows a power-law decay
with exponent �1, and is truncated at the cut-o� size
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Figure 2: FSS analysis of school-size data. (a) FSS plot of
the biomass distribution on double-logarithmic scale. Di-
mension data of sardine schools (same as Fig.1) are con-
verted by Eq.(11) with � = 3=5. Here y = WLA+B

is plotted versus x = N=LA with A = B = 1. Two-
dimensional variances [same as Eq.(10)] are calculated
for bins chosen equally spaced on a logarithmic scale as

x 2
h
10�1+(k�0:5)=3; 10�1+(k+0:5)=3

�
with k = 0; 1; : : : ; 5.

The rectangle in gray is same as Fig.1. The solid line is
a prediction of the mean-�eld theory [20]. (b) The re-
gion of the AB-plane in which the minimum of the mean
of two-dimensional variance exists. A measure of data
collapse for scaling, i.e. the mean of two-dimensional
variance, �, takes a minimum �min for the right choice
of (A;B). The minimum is found with the precision
i.e. width of the minimum, �� = 10�3 in black region
(��=�min � 3:12� 10�3). The values of the parameters lie
in the intervals A = 0:999� 0:008 and B = 1:003� 0:024,
and therefore � = 1:004� 0:032.

of Eq.(3). The FSS collapse con�rms the scaling laws
for school sizes, Eq.(1) with � = 3=5 and Eq.(2) with
� = 1.
We now choose the normalizationX

i

NiWi�N = �; (15)

where � denotes the total �sh population in the school
system (

P
iWi�N gives the total number of schools).

Since Eq.(12) implies LA / �
 with a scaling exponent

, the FSS relation for the school-biomass distribution
is written as

W (N) = N��P (N=�
): (16)

Accordingly, the normalization of Eq.(15) yields the
scaling relation

2� � = 1=
: (17)

The best-�tting value in data collapse, � � 1, gives

 � 1. As a consequence, the location of the cut-o� in
the power-law distribution of school sizes simply reads

hNiP / �; (18)

which is veri�ed by means of extensive numerical sim-
ulations [20, 21].

4. Newton-rules model
4.1 Gaussian school

Let us now investigate cohesive motion of schools in
a three-dimensional space from the viewpoint of the
behavioral algorithms which govern their formation

and dynamics: attraction between neighbors main-
tains cohesion of the school; a tendency to align with
neighbors produces collective motion of the school.
The minimal model of cohesion is a linkage of neigh-
bors consisting of harmonic spring, because the inter-
�sh distance follows a Gaussian distribution [3, 19, 24].
Using the relative coordinates to the center of school,
the equation of motion of �sh (as noisy self-propelled
particles) in a large school of sizeN is written by a one-
body approximation as the following Langevin equa-
tion [18, 19]:

d2r

dt2
= f(r)� J

dr

dt
+ �(t); (19)

providing that individuals are su�ciently sensitive to
behavior of their neighbors, where f(r) is the cohesive
force; J denotes the strength of alignment; and � is a
random perturbation of the velocity with strength �v
and a �-correlated time dependence.
The attractive interaction force acting on one body

due to a system of bodies is the neighbor-joining har-
monic spring. One essential approximation is to re-
place the many-�sh problem by the problem of solving
the motion of one �sh in a certain self-consistent �eld.
The cohesive force is then written in the following form
by the one-body approximation:

f(r) = �
~k

N�
r; (20)

where ~kN�� is the e�ective spring constant for the
springs strung out from the center of the school to
a �sh: the number of consecutive springs joining the
�sh to the center of the school via other companions
is proportional to N�. The total \elastic energy" of
inter-�sh bonds in the school depends linearly on num-
ber N of individuals in the school. The overall elas-
tic energy after integration over a sphere of radius
R (denoting the average radius of the school) results
Eel / R4N��, which is derived from the ideal har-
monic spring, Eq.(20). Therefore, the exponent � will
be determined self-consistently,

R4

N�
/ N: (21)

The solution of the Langevin equation (19) with
Eq.(20) takes the following asymptotic forms:

�2v

h
�
D
(dr=dt)

2
Ei

� 3�v=J (22)

(
uctuation-dissipation relation), and

hr2i � �2v
~k
N�; (23)

where the root-mean-square
phr2i gives the average

radius of the school, R. From Eq.(21) together with
Eq.(23), the self-consistent value of the exponent � is
obtained:

� = 1: (24)

As a consequence, the self-consistent cohesive force
reads

f(r) = � �2v
b2N

r; (25)



where b denotes the e�ective inter-�sh distance (a con-

stant independent of N): b2 � �2v=
~k. The average

radius of the school is then given by bN1=2.

4.2 Excluded volume e�ect

From Eq.(19), the probability of the school radius
being between r and r + dr is given by the following:

	0(r) = 4�r2
�

3

2�b2N

�
exp

�
� 3r2

2b2N

�
(26)

in a stationary state in three dimensions (i.e. the po-
sition vector r follows a Gaussian distribution). The
Gaussian school model considered above permits �sh
to occupy the same region in space. Of course this
is a physical impossibility since each �sh possesses its
own �nite volume. Therefore, in the \excluded vol-
ume" school, there are a number of Gaussian school
con�gurations which are disallowed due to the steric
e�ect. Let p(r) be the probability that a Gaussian
school con�guration, as counted in Eq.(26), is also al-
lowable under the excluded volume condition. We now
calculate the probability that no overlaps occur when
we placeN �sh within a region of volume (� r3), which
will lead to an estimation for p(r). Letting w be the
volume which is e�ectively excluded to one �sh by the
presence of another (w . b3), the probability that one
particular �sh will not overlap with another is then
given by (1�w=r3). Since there are N(N � 1)=2 pos-
sible combinations of pairs, the probability that no
overlap occurs in all of these combinations is given by

p(r) = (1� w=r3)N(N�1)=2 = exp

�
�wN2

2r3

�
; (27)

where r3 � w and N � 1. Therefore, the probability
distribution of the school radius r can then be written
as

	(r) = 	0(r)p(r) / r2 exp

�
� 3r2

2b2N
� wN2

2r3

�
(28)

for the excluded volume school.
Both 	0(r) and 	(r) have a maximum at certain

values of r. Let us estimate the average size of the
school radius in each model by calculating the posi-
tions of these maxima. The maximum of 	0(r) occurs
at R0 = (2b2N=3)1=2. The maximum of 	(r) occurs
at R, which satis�es the following equation obtained
by di�erentiating the logarithm of Eq.(28):

�
R

R0

�5

�
�
R

R0

�3

=
9
p
6

16

w
p
N

b3
: (29)

If N � 1, the second term on the left-hand side of
Eq.(29) can be neglected and hence

R ' R0

 
w
p
N

b3

!1=5

/ N3=5: (30)

The exponent is modi�ed strongly by the steric e�ect,
and \3=5" is the very value extracted through the data
collapse. Here we see an analogy between school ge-
ometry and polymer chain statistics.

5. Discussion

To understand the scaling law for school geometry,
Eq.(1) with � = 3=5, it is essential to see what the
value of � represents. The number of �sh in a school of
radius R scales as N(R) � R1=� : the packing structure
within the schools is characterized by a non-integer
(i.e. fractal) dimensionality of 1=� � 1:7. As indicated
in the Introduction, large internal variations in packing
density occur within a school. Fr�eon and Misund [5]
pointed out that a source of substantial variation in in-
ternal school structure is the formation of subgroups.
Relatively independent movements of such clusters of
individuals can open up empty spaces and cause large
variation in school volume. The polymer-chain ana-
logue of the subgroup in school conformation is the
\blob" [2, 22]. Inside the subgroup the core repulsion
by excluded volume e�ects is a weak perturbation lead-
ing to a Gaussian state.
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