Scaling behavior in a fish school and a school system*
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1. Introduction

Animal packing in social aggregations is of funda-
mental interest in ecology, and their conformations
have been extensively studied. Parr [23] conducted
pioneer tank observations of pelagic fishes (herring,
sprat and mackerel), and noted the “persistently uni-
form density” of a school. Pitcher and Partridge [26]
validated that all the fish in a school occupy a vol-
ume proportional to Nb®, where N is the number of
fish and b is the mean nearest-neighbor distance (ap-
proximate to the mean fish-body length) in the school.
Many models for social aggregations, however, pre-
dict that densities increase as the group size (in num-
ber) increases (overviews of such models are given in
Ref. [27]). Mogilner et al. [17] mathematically tack-
led this problem of constant density and revealed the
condition for a well-spaced group, i.e. what class of
mutual interactions result in a relatively constant in-
dividual distance in the interior of the aggregate.

More recently, by means of underwater acoustics,
the school sizes (in number or biomass of fish) have
been quantitatively measured for different values of the
dimensional size of schools in the wild. Precise data
on conformations of large-sized schools of pelegic fishes
became available rapidly, which were extremely helpful
in elucidating a certain geometric law, i.e. the relation
between dimensional and biomass sizes of pelagic fish
schools, bringing about some important changes in our
viewpoints. Misund and colleagues [1,8, 10-15] found
that the power-law scaling in dimension-to-biomass re-
lationship exists, and is robust across a broad range of
pelagic species (anchovy, herring, mackerel, pilchard,
saithe, sardine, sprat, etc.) as well as across diverse
environments. They demonstrated that if the biomass
N in a school is, say, doubled, the cross-sectional area
of a school is increased by a factor 22¥, i.e. the radius
R of the school scales as

R = (constant) x N (1)

and that the exponent v looks universal, reading 0.5
(from the field data v ranges from 0.415 to 0.77). The
geometric law they found implies that the mean den-
sity of a school scales as N'~3" in three dimensions
of space and the conformation of social aggregations
swells (i.e. v > 1/3). N, denoting the school biomass,
is hereafter defined by the number of fish in a school.

It might come as a surprise that packing densities
decrease as the group size increases, contrary to pre-
vious observations and predictions. Laboratory obser-
vations for school packing structure have been made
exclusively in small tanks. In all set-ups, the fac-
tors resulting in homogeneous, cohesive school may
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be especially pronounced. Pitcher and Parrish [25]
claimed that homogeneity in schools has been over-
emphasized. In situ observations of pelagic fish schools
revealed that the packing structure within the schools
is rather heterogeneous, and even empty vacuoles have
been recorded [4,9, 16]. Besides artificial environments
in small tanks, the discrepancy in former observations
could have been caused by too small numbers of fish
in the schools. For instance, in Ref. [26], N takes a
few tens of fish. Since such a geometric law above is
always defined only in a certain limit [2], the scaling
in the dimension-to-biomass relationship is expected
to hold for large-sized schools of pelagics.

In this paper, the exponent v is estimated according
to the established universal scaling law in the school-
size distribution of pelagic fishes [20,21]: choose the
suitable value of v to achieve the best data-collapse
on the size distributions in terms of the school dimen-
sion. Notice that the dimension-to-biomass relation-
ship is a property of the single school and the scaling
exponent v is determined by the (social) interaction
between fish, while the scaling in the school-size dis-
tribution emerges from the inter-school interactions at
population level.

2. Scaling in school geometry

The biomass distributions W (N) follow a power law
with exponent 8 =1 up to a cut-off size (N)p,

W(N)=NPP(N/(N)p), (2)

where P(x) is a crossover scaling function with a
strong drop for z > 1, and the cut-off size (crossover
size from power-law to exponential decay) is calcu-
lated from the biomass histogram data {(N;, W;)|i =
1,2,...},

Y, NW,AN’

where histogram bins are chosen with width AN.

The dimension data of fish schools are binned
with width AR, giving the set of frequencies
{ (R, W{?)|i =1,2,...}. From Egs.(1) and (2), the
distribution of geometric dimensions of fish schools is
represented as

(N)p

W' (R) = R™'P‘“ (R/(R)p) (4)
where
(R)p = (N)p, (5)
and
P (z) = P(z/"). (6)

Therefore, the school-dimension distribution follows
a power law with the same exponent “—1” as the



school-biomass distribution. The power-law distribu-
tion W (R) is truncated at a cut-off size (R) p, which
is also calculated from histogram data of school geo-
metric dimensions,

v
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(R)p = (7)

The following normalizations are adopted for the scal-
ing function P‘®(z) and the histogram data of geo-
metric dimensions of fish schools, because the cut-off
size (N)p is proportional to the total number of fish
in the school system [20,21, see also Eq.(18)]:

o0
/ 2P () dg = 1, (8)
0
and
ST RYWOAR = (R, (9)
1
respectively.

Since the size (R)p depends on the exponent v fol-
lowing Eq.(7), so that we can determine the value of v
by evaluating the location of the cut-off in the power-
law distribution W@ (R). I make use of the data col-
lapse to extract the exponent. From Egs.(4) and (8),
when y = W (R)p is plotted against = R/(R)p
with correct parameter v, all the empirical data should
collapse onto each other. The power-law exponent
of school-dimension distributions, v, is then evaluated
through data collapse. Let us search for the value of v
that places all the points most accurately on a single
curve. We use a set of histogram data of vertical di-
mension of Japanese sardine Sardinops melanostictus
schools, from 22 acoustic surveys by Hara [7] off south-
eastern Hokkaido for seven years, 1981-1987. Hara [6]
reported that Japanese sardine migrate as a huge-sized
school in number from a few hundreds of thousands to
a few million of fish. To obtain the best data collapse,
the z-axis is divided into bins (Fig.1a), and for each
bin two-dimensional variance

€= (02/p2)" + (04 /11y)* (10)

is calculated, where o, and o, denote the standard
deviation of the mean p, and p,, respectively. The
parameter v is then estimated at value that mini-
mize the mean of two-dimensional variance for the bins
(Fig.1b). The mean of two-dimensional variance, €, is
a measure to determine the goodness of collapse [21].
A good data collapse can be obtained by using the
value v & 0.6. The resulting plot of empirical school
data is shown in Fig.la. Experimentally fitting the
parameter v to achieve a good data collapse, “3/5”,
is reminiscent of the Flory value of the exponent in a
power-law dependence of the coil radius of a polymer
chain (in three-dimensional solutions) on the degree of
polymerization [2].

3. FSS in school-biomass distributions

The acoustic-survey data are converted into a
school-biomass histogram as follows

W (N)AN « W9 (R)R'*"'AR. (11)
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Figure 1: Data collapse to extract the exponent v.

(a) Scaled distribution of geometric dimensions of sardine
schools. y = W9 (R)p is plotted versus z = R/(R)p
with v = 0.6 on double-logarithmic scale. The bins
are chosen equally spaced on a logarithmic scale as = €
[10*”’“/5, 10*1+<k+1>/5) with k = 1,2,...,6. The rectan-
gle in gray reads the interval p, &+ oy, i.e. the error o, on
the mean p, (indicated by the slit) for each bin. The solid
line is a prediction of the mean-field theory [20]. (b) The
mean of two-dimensional variance, €, versus the power-law
exponent v. Although € shows noisy fluctuations, it takes a
minimum around v = 0.6. Data from Ref. [7] are analyzed.

We now crosscheck the value of v through finite-size
scaling (FSS) analysis of school-biomass distribution
[21]. Since the finite population size causes the trun-
cation of power-law distribution W (N) oc N=#, there
is a well-defined quantity

I = >, N PWAN (12)
S NPW,AN

which depends on the system population size. In order
to characterize the finite size effects, FSS hypothesis
is used: the distribution function depends on N only
through the ratio N/LA,

W(N;L)dN = L=8F (N/L*)d (N/L*),  (13)

where F(x) is a universal function independent of fish
population size. The prefactor L2 is required to en-
sure the normalization

> ONPWAN =1, (14)

where P(N) [= NSW(N)] now represents the prob-
ability distribution of school-biomass sizes. From the
FSS hypothesis, it is expected that when WLATE is
plotted against N/L# with correct parameters A and
B all the data collapse onto a single curve. The power-
law exponent of biomass distributions, 3, is then eval-
uated through FSS analysis. The value of B/A is the
estimate of the power-law exponent 3. Let us ana-
lyze a set of 22 acoustic-survey data of sardine schools
(same as Fig.1) converted into biomass histograms by
using Eq.(11) with v = 3/5. In a simultaneous best-
fitting procedure (Fig.2), a good data collapse can be
obtained by using the values A ~ 1 and B = 1. The
power-law exponent derived from the FSS collapse is
B = 1. The resulting plot is shown in Fig.2a. The
school-biomass distribution follows a power-law decay
with exponent —1, and is truncated at the cut-off size
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Figure 2: FSS analysis of school-size data. (a) FSS plot of
the biomass distribution on double-logarithmic scale. Di-
mension data of sardine schools (same as Fig.1) are con-
verted by Eq.(11) with v = 3/5. Here y = WLAT?
is plotted versus @ = N/L* with A = B = 1. Two-
dimensional variances [same as Eq.(10)] are calculated
for bins chosen equally spaced on a logarithmic scale as
z€ [10*”(’“*0-5)/3,10*1+<’“+°-5>/3) with k = 0,1,...,5.
The rectangle in gray is same as Fig.1. The solid line is
a prediction of the mean-field theory [20]. (b) The re-
gion of the AB-plane in which the minimum of the mean
of two-dimensional variance exists. A measure of data
collapse for scaling, i.e. the mean of two-dimensional
variance, €, takes a minimum €pj, for the right choice
of (A,B). The minimum is found with the precision
i.e. width of the minimum, Ae = 10™* in black region
(A€/Emin =~ 3.12 x 1073). The values of the parameters lie
in the intervals A = 0.999 + 0.008 and B = 1.003 & 0.024,
and therefore 8 = 1.004 £ 0.032.

of Eq.(3). The FSS collapse confirms the scaling laws
for school sizes, Eq.(1) with v = 3/5 and Eq.(2) with
B =1.

We now choose the normalization

Z N;W;AN = &, (15)

where ® denotes the total fish population in the school
system (D, W;AN gives the total number of schools).
Since Eq.(12) implies L* o« ®” with a scaling exponent
v, the FSS relation for the school-biomass distribution
is written as

W(N) = N"PP(N/®"). (16)

Accordingly, the normalization of Eq.(15) yields the
scaling relation

2—-3=1/. (17)

The best-fitting value in data collapse, § &~ 1, gives
v = 1. As a consequence, the location of the cut-off in
the power-law distribution of school sizes simply reads

which is verified by means of extensive numerical sim-
ulations [20, 21].

4. Newton-rules model
4.1 Gaussian school

Let us now investigate cohesive motion of schools in
a three-dimensional space from the viewpoint of the
behavioral algorithms which govern their formation

and dynamics: attraction between neighbors main-
tains cohesion of the school; a tendency to align with
neighbors produces collective motion of the school.
The minimal model of cohesion is a linkage of neigh-
bors consisting of harmonic spring, because the inter-
fish distance follows a Gaussian distribution [3, 19, 24].
Using the relative coordinates to the center of school,
the equation of motion of fish (as noisy self-propelled
particles) in a large school of size N is written by a one-
body approximation as the following Langevin equa-
tion [18,19]:

d*r dr

= 1) = I+ (o), (19)
providing that individuals are sufficiently sensitive to
behavior of their neighbors, where f(r) is the cohesive
force; J denotes the strength of alignment; and 7 is a
random perturbation of the velocity with strength e,
and a é-correlated time dependence.

The attractive interaction force acting on one body
due to a system of bodies is the neighbor-joining har-
monic spring. One essential approximation is to re-
place the many-fish problem by the problem of solving
the motion of one fish in a certain self-consistent field.
The cohesive force is then written in the following form
by the one-body approximation:

Fr) = o (20)

where kN~¢ is the effective spring constant for the
springs strung out from the center of the school to
a fish: the number of consecutive springs joining the
fish to the center of the school via other companions
is proportional to N®. The total “elastic energy” of
inter-fish bonds in the school depends linearly on num-
ber N of individuals in the school. The overall elas-
tic energy after integration over a sphere of radius
R (denoting the average radius of the school) results
E. o R*N~“, which is derived from the ideal har-
monic spring, Eq.(20). Therefore, the exponent a will
be determined self-consistently,

R4

Na N. (21)
The solution of the Langevin equation (19) with
Eq.(20) takes the following asymptotic forms:

o2 [z <(dr/dt)2>] ~ 3¢, /] (22)

(fluctuation-dissipation relation), and

(r?) ~ 2N, (23)

|,

where the root-mean-square /(r?) gives the average
radius of the school, R. From Eq.(21) together with
Eq.(23), the self-consistent value of the exponent « is
obtained:

a=1. (24)

As a consequence, the self-consistent cohesive force

reads

0.2

Fr) ==, (25)




where b denotes the effective inter-fish distance (a con-
stant independent of N): > = 02/k. The average
radius of the school is then given by bN'/2,

4.2 Ezcluded volume effect

From Eq.(19), the probability of the school radius
being between r and r + dr is given by the following;:

5 3 3r?
IPO (7") =A4nr m exp —m (26)

in a stationary state in three dimensions (i.e. the po-
sition vector r follows a Gaussian distribution). The
Gaussian school model considered above permits fish
to occupy the same region in space. Of course this
is a physical impossibility since each fish possesses its
own finite volume. Therefore, in the “excluded vol-
ume” school, there are a number of Gaussian school
configurations which are disallowed due to the steric
effect. Let p(r) be the probability that a Gaussian
school configuration, as counted in Eq.(26), is also al-
lowable under the excluded volume condition. We now
calculate the probability that no overlaps occur when
we place NV fish within a region of volume (~ r3), which
will lead to an estimation for p(r). Letting w be the
volume which is effectively excluded to one fish by the
presence of another (w < b%), the probability that one
particular fish will not overlap with another is then
given by (1 —w/r?). Since there are N(N — 1)/2 pos-
sible combinations of pairs, the probability that no
overlap occurs in all of these combinations is given by

plr) = (1= wfr) V2 = e (42 )

where 72 > w and N > 1. Therefore, the probability
distribution of the school radius r can then be written
as

U(r) = To(r)p(r) o< 72 exp <— ZQI;QN — u;i\i) (28)

for the excluded volume school.

Both ¥4(r) and ¥(r) have a maximum at certain
values of r. Let us estimate the average size of the
school radius in each model by calculating the posi-
tions of these maxima. The maximum of ¥y(r) occurs
at Ry = (2b°N/3)'/2. The maximum of ¥(r) occurs
at R, which satisfies the following equation obtained
by differentiating the logarithm of Eq.(28):

R\’ (R’ _9/6uwVN (29)
Ry Ry) 16 b

If N > 1, the second term on the left-hand side of
Eq.(29) can be neglected and hence

1/5
N
R~ R, <“’;(> x N3/3. (30)

The exponent is modified strongly by the steric effect,
and “3/5” is the very value extracted through the data
collapse. Here we see an analogy between school ge-
ometry and polymer chain statistics.

5. Discussion

To understand the scaling law for school geometry,
Eq.(1) with v = 3/5, it is essential to see what the
value of v represents. The number of fish in a school of
radius R scales as N(R) ~ R'/”: the packing structure
within the schools is characterized by a non-integer
(i.e. fractal) dimensionality of 1/v = 1.7. As indicated
in the Introduction, large internal variations in packing
density occur within a school. Fréon and Misund [5]
pointed out that a source of substantial variation in in-
ternal school structure is the formation of subgroups.
Relatively independent movements of such clusters of
individuals can open up empty spaces and cause large
variation in school volume. The polymer-chain ana-
logue of the subgroup in school conformation is the
“blob” [2,22]. Inside the subgroup the core repulsion
by excluded volume effects is a weak perturbation lead-
ing to a Gaussian state.
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