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ABSTRACT 

Chaos control in some of the one-and two-dimensional traffic 宜ow dynamical models in the mean field 
theory is studied. One dimensional model is investigated taking into accoun七 the effect of random delay. 
Two dimensional model takes into account the e在ects of overpassesヲ symmetric distribution of cars and 
blockages of cars moving in the same direction. Chaos control is performed within both replica and 

nonreplica approaches, and using parameter perturbation me七hod.

Nowadays traf五c flow problems has acquired interdisciplinary status.seeぅ e.g. refs.1-10.Mean 五eld

theory and cellular automaton (CA) models have extensive applic剖ions to 七he tra匝c flow problems. 
In 出is paper we deal with two models in traffic 自ow dynamics in 七he mean 註色ld theory:on令 and twoｭ
dimensional systems in the context of chaos control 七heory possibilities in tra担c problems. The outline 
of this paper is 七he following:first we present bo七h one句 and 七wo-dimensional tra伍c models in question; 
then we apply some chaos con七rol me七hods 七o these dynamical systems.W巴 begin with one dimensional 
model. 
Recentlyうはie authors of ref.9 have presented microscopic deriv:抗ions of mean field theories for CA 
models of tra缶c flow in one dimension. They established the following mapping between the average 

velocities of cars v at times t+ 1 and t: 

内十 1)= (2 -f)v(t） ー（1 -p)-1v2(t) + p(l -p)-1v3(t）ぅ
) 
1
i
 

( 

where,p is the car density; f is the quantity responsible for the random delay due to thιsay, di百erent
driving habits and road conditions. So on日 has discrete dynamical nonlinear sy百七em, which exhibits 
rich dynamical behavior. 
Not so long ago Biham et al.(ref.2) (below 註mply BML) in七rod附d a simple 七wo dimensional (2D) CA 
model with tra伍c lights and studied the average velocity of cぽs as a function of 七heir density.In that 
modelう品目 mo司ring from wes七 to east a七temp七七o move in odd time steps and cars from south to north 
-in e四n time steps. There are three possible st成田 on the squ町e lat ti田：（i) occupi吋 by an eastbound 
car; (ii)occnpied by a northbound c紅；（iii)vaca凪 In ref.8 i七 was underlined that the divison .of time 
into odd and eveまltime steps simulates 七he e荘ect of of tra伍clights.The main result of BML:the average 

velocity in the long 七imelimit vanishes when the density of cars p is higher th乱n a critical value Pcｷ Below 
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Pc, the traffic is in a moving phase, while above Pc it is in a jamming phase.Numerous improvements of 
the basic BML model taking into account the effects of factors such as overpasses, faulty tra毘c lights, 
asymmetric distribution of cars in a homogenous lattice, and traffic accidents,(see ref.8 and refenences 
therein. )has been carried ou七. In 七he above-ci七edrecent paper (ref.8) an improved mean field 出eoryfor 
2D traffic 丑owwith a 仕actionc of overpass sites and with possible asymmetry in the distributions of cars 
in the two different directions is studied. The model in fact is the improved version of Nagatani model, 
ref.11. The overp踊 sites c組 be occupied simul七aneously by 叩 eastbound c町 and a northbound 
car, thus modelling the 七Wかlevel overpasses in modern road systems in cities.N agatani model deals 
wi七h the isotropic distribution of c町swith di宜erenも overp剖ssites.It has been shown that 七he addition 
of overpasses enhances both the average speed of the tra伍C 叩d critical densi守 of cars.However the 
Nag品切i model has some shor七comings in the sense 七hat blockage of c町s due to cars moving in the 
same direction is no七回ken in七o account properly, which led to too low es七ima七ionof the concentration 
of overpasses for the 七ransi七ion from jamming to moving phase at p = 1 and too high es七im叫e of the 
cri七icalcar density at c = 0. Although in this paper we will deal wi出七heisotropic distributions of cars 
for the sake of completeness we first write the system of equ剖ions with 回ymmet早 Let Px and Py to 
be the density of cars in the x (eastbound) and y(nor七hbound) directions respectively.Also le七 Vx and Vy 
もo be もhe average speeds of 回目 inthe same directions;Let also c to be a fraction of overp回Ssites.Then 
according to ref.8 these quantities are related 出rough the following nonlinear dynamical equations: 

Vx = 1 ー（1-c)(pyv;;1 + Px(v;1 -1)) 

Vy= 1 一（1 -c)(pxv;1 + Py(v;;1 -1)), (2) 

From the matematical point of view 七he system (2)also is the nonlinear dynamical system. 
I七 iswell-known tha七 somedynamical systems depending on the value of systems’ parameters exhibit unｭ
predictable,chaotic behaviour,refs.10-15. The seminal papers (refs.12-13) induced avalanche of research 
works in 出e theory of conもrol of chaos in synergetics. Chaos synchronization in dynamical systems is 
one of such ways of controlling chaρs. In the spirit of refs.12-13 by synchroniz叫ion of two systems we 
me組也前 the trajectories of one of the sysもemswill converge to the same values 拙七he other and they 
will remain in step with each other. For 七he chao七icsystems synchroniz叫ionis performed by the linking 
of chaotic systems with a common signal ぽ sigr叫s (the SCトcalled drivers) 
According to refs.12-13 in the above mentioned way of chaos control one or some of 七hese sta七e variｭ
ables can be used 剖 an input to drive a subsysもem 七ha七 is a replica of part of the original system.In 
refs.12-13 it has been shown 出品 ifall the Lyapunov exponents (or the larges七 Lyapunov exponent）町
七hereal p町七sof these exponents for the subsys白血町e nega七ive then 七he subsys七emsynchronizes to the 
chaotic evolution of original system.If the largest subsys七emLyapunov exponent is not negative then 儲
it h邸 been proved in ref.18 synchronism is also possible. In 七his 回se a nonreplica system constructed 
according to ref.18 is used instead of replica sub可S七em.

The interest to the chaρs s!nchronization in p町tis due to the application of 七hisphenomenen in secure 
communications, in modeling of brain activity and recognition processes, etc, see,references in ref. 17). 
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Also we should mention that this method of chaos control may result in the improved performance 
(according to some criterio吋 of chaotic systems (see, e.g.ref.17). 
In this paper for the first time （七o our bes七 knowledg日） we report on the possible chaos control in 出e
traffic 珪ow models. 
Namely our paper is dedic剖ed to the study of the stabliz抗ion of unstable behaviors in one-and twoｭ
dimensional tra昂c models with the proportional feedback, replica and nonreplica and parameter change 
methods in chaos control theory. 
First we inves七igate the one dimensional model. The sta七ionary values of average velocity can be easily 
calculated from the equation (1).These values are: 

st st 1 -(1 -4(1 -f)p(l -p））~ 
,Vz ＝内） (3) 

The stability analysis of 七his stationary states show tha七：the vft is always unstable,exc日pt for p = 1. 
Indeed, for 七his state 

v(t + 1) 
ト一一“I= 1(2 -!)I> i 

り （t)
(4) 

As f changes between zero and uni七y.The instability condition for the second stationぽy state is: 

-13(1 -4(1-f)p(l -p)) -1 -2(1 -4(1 f)p(l -p））~ 
I (1 -P） ，十2-fl> 1 ぅ（5)

As the stability analysis show in general we have stable and unst乱ble states depending on the value of 
p, f. As a rule the unstable sta七es are disc乱rded as unphysical ones.Bu七 nowadays due to the success 
of chaos control theory it is possible to stabilize the unstable fixed points or periodic orbits. Below in 
dealing with the con七rol of insぬ.bility of fixed points in one dimensional map we will follow 七he so山called

proportional feedback me七hod described in ref.19, which is map based variation of a method proposed 
in ref.12.Following the method presented in ref.19 first we line乱.rize the one dimensional map (1) in the 
vicini七y of the fixed points (or stationary states V8t): 

り（t ÷1) = h（υ（t) -V8t) + vへ (6) 

where !hi > 1 is the slope of the map at u〆 In 七he mapping (1) we have only one parameter f by 
changing which one can s七abilizethe unsもablefixed points.The positive answer to this problem vindicates 
the intuition that by improving drving habit,road condiもions one cansolve some tra伍c di缶culties.Of

course, theoretically the regularization of tra担cflow also could be achieved by manipulation with p, say 

by 七he regulation of cars en七rance to 七he tra自c 日ow. Having this in mind let us denote the p紅ameters

出 m=(f,p).Now suppose that we change 出is parame七er m by small amount om 加盟ove the unstable 
fixed point V8t wi七hout signi五cant chan説明 ofthe slope of the map (1）九 In o也君主 words

v川（m + om) = h( Vt -V吋間十 Jm））十 vst(m 十 5m), (7) 
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(in order to avoid confusion, in some formulai we write t as a subscript) where 

内十om)=8m~ ÷ vst ヲ (8) 

Now suppose th抗的ココ t戸（m)+o1v ,where the second term in the right-hand side of this equality is much 
smaller than 七he first one. If at this moment mis changed to m+om such that vt+1 （間十 om)= V8t(m） う
the system s同七e is directed 七o the original uns七able fixed poin七 upon 七he next iter抗ion.If m is then 
switched back 七oits original value, the system would remain at vst inde五nitely盆 Thenecessary varia七ions
of m can easily be determined by the formula 

m＝~ー均＝ ~＇ (9) 
(h -1 ）耳石

One can see easily the necessary changing of parameters to stabilise the uns七ablefixed poin七日 is propor砂

tional to the deviation of v from the fixed point (or stationary sta七e).Tl叫 is why the method is called 
the proportional 叩feedback one. So 七h号 use of the proportional feedback method allows one to stabilize 
unstable stationary states. Spe白，king about possible ways of chaos control in one dimensional systems 
in the context of tra血c 宜ow instabilites one should also mention about such a con七rol by changing of 
dynamical variable (velocities of cars) itself, ref.20.In this connection it is worth while to mention the 
E邑fs.10,21 where the velocity of cars could become much larger than unity. 
Now we study the two dimensional case.Below, as mentioned above we restrict ourselves to the isoもropic
case. 
The system of equation (2)can be regarded as a mapping describing the time evolution of the velocity 
in 七he moving phase with 日（t+l)a吋 vy(t+1) on the left申I凶
side. 
In the case of isotropic distribution this mapping can be writ七en as: 

p -1 p 1 
vx(t+ 1) = 1-(1-c)(-v'U 1 十一 （v;1 -1)) = F1, 

2 y 2 

Vy(t + 1) = 1 -(1 -c）（丸一l 十 E(v-1 -I））＝凡 (10) 2 x 2 y 

where Px =Py ＝~· 
The system of nonlinear 阻apping has もwo steady sta七e solutions 

(1 -c)p (1 -c)p 2 
f 一（1 ＋一一土（（1 ＋一一）:l - 4(1 一例言）？ (11) 
2 2 2 

where v = Vx =Vyｷ 
First of all we should 白id the condition of possible chaoticity in 七he 可stem (10). 
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The stability of mapping is det坦rmined by the eigenvalues of the Jacobian matrix of the nonlin記ar
mapping ( 10). 

θ（F1, F2) 
J = ' (12) 

δ（ Vx ( t） ，円（t))

It can be seen easily the eigenvalues of the Jacobian matrix is calculated by the following equation: 

λ2 一入（ 1 -c)fj = 0, (13) 

From here we ob同in easily that 

入1 = 0, 

入2= (1 一斗 (14) 

In the las七 expression while calculating 入 we use はie s七eady state solutions (10). This simplification is 
justified at least for systems whose chaotic behavior has arisen ou七 ofstability of fixed points, see ref.15, 
乱lso ref.22-23. 
The mapping will exhibit chaotic behaviour, if the absolute values of 入 exceed unity. 

｜入21>1, (15) 

One can see easily if 七he car density exceeds the critical o出（see,ref.8) then j乱mming is taki時 place ぅ

and the average velocity will be diminished thus promoもing the congestion and chao七icity. As the initial 
or original nonlinear mapping is symmetric over Vx and 町 considering only one of these variables as a 
driver will be sufficie叫Takefor the defi凶eness Vx variable as a driver. Then the replica Sl伽ys七e叫with
the superscriptγ ） can be writ七en as follows: 

p p 1 
v~ （t + 1) = 1 ー（ 1 -c）（一一一十一（一一一 1)) ＝民 (16) 

2vx(t) 2 v~ （t) 

Then もhe Lyapunov exponent can be calculated as follows,ref.18 

δH p 1 
A=  ln訂＝ ln(l -c） ~::2°' (17) 

-－宮市V

For the chaos control (to be more specific for the synchronization of the evolution of the response 
system to the chaotic evolution of 也einitial nonlinear mapping when time goes to infinity) it is required 

七ha七

A く 0, (18) 

. It will take place, if the following condition is satisfied: 

(1 -c）会＜ 1, (19) 

-28-



. Thus we have two ineq凶li七ies:(19) and (15).If 七hese inequalities do not contradict each other, then 七he

replica approach allows us to perform chaos control. We see that chaos control wi七hin replica approach 
is realizable if 

円
・4く

1

一
ポ

D
ι
 

円U
1

ょく宅
土 (20) 

Although the restriction (20) is very severe in 七he sense that di叩ason of changing of tra伍cflow models 
p町ameters such as c, p could be very narrow.Neverthelessう as the analysis of the data presented in ref.8 
shows that chaos synchronization would be possible within the replica approach.If this approach fails, 
we can apply nonreplica one to achieve our goal,as it was underlined above. 
According 七o ref.18, within nonreplica approach we can use the following nonreplica response sys田
tem(with the superscrip七” nr"): 

v~r(t + 1) = 1 -(1 -c）（主 （vnrr1+ E （υ－ 1 - 1 ））十 α（咋r -Vx) ＝凡
2 y 2 x 

p -I p 町一V~r(t 十 1）口 1-(1-c)("2九十 2( (Vy ) 1 - 1 ））十 β（v~r -Vx) = F4, 

where αand βare the arbitrary constants. 
Here again as in the previous case we consider Vx dynamical variable as the driver. 
The Lyapunov 色xponents are the eigenvalues of the Jacobian: 

(21) 

θ（F3, F4) 
J = ' (22) 

δ（ v~r ( t), v~r ( t)) 

From (21) we easily establish 七hat these exponen七s are solutions to the following equation: 

入2 ＿入（α ＋ (1 -c)Ev-2）一 β（1- c）丸一2= 0ぅ (23) 
2 

Here v is the steady sも叫e solution of th母 original mapping. As it can be seen 金om (23) the roots of 
出is equ国ion 入1 and 入2 s前isちr the relationships: 

入r ＋入2 ＝ α ＋ (1 －や六

入1入2= -,6(1 －や六 (24) 

Remind that our aim is to satisfy 出e conditions ｜ λii< 1 叩d IA2I < l. Due 七0 七he arbitraryness of the 
constan七百 αand βthis can be done easily. 

Up to now while performing chaοs synchronization we have taken the advantage of using the presence of 
driving Vぽiables explicitly.Our calculations show that chaos synchronization is also reachable in C出eof 
parameter perturbation method,ref.24. Namely, we show that by changing the fraction of overp田ses one 
C加工凶ke the absolute values of 入i2 less than l出ty. (In ref.24 this theory was proposed for continuous 
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dynamical systems.Here we readapt 出品 approach for 七he case of discrete dynamical S｝哨ems.). Indeed 
by assuming the following change for c : 

C = C1 － αc （むy - Vy叩）， (25) 

(where:c1 is the nominal value for 七he c in the original two dimensional model；αc is the control coe伍de以
七o be found;vy a凶 Vy叩 are are response system and drive system orbits,respectively.) after simplE 
calcula七ions we obtain 也前 for the isotropic case much sought eigenvalues are: 

入1 = 0, 

p ーョ p 1 
入2 = 2(1 -c1)-v；；：－，，：＜十一αc(l -2v,:;:-v1), (26) 2 up 2 p 

Thus we have the real possibility to satisか the condition for 七he chaos control: I 入21 < I. 
In conclusion in this work we poin七edout to the possibility of the stabilization of the unstable stationary 

8七ates in one of one dimensional model wi七h random delay wi出 chaos control methods. Also we have 
investigated the possibilty of chaos control in one of two dimensional mapping in tra伍C flow within 
replica, nonreplica and parame七er change approaches.We showed that 七here is a real possibility of using 

chaos control methods in tra缶c flow problems.(Here in this paper we just briefly underlined some of 
chaos control methods in connection with tra伍c flow control problems.More detailed and extensiv·告

resl出s will be published elsewhere.). 
Speaking about the study of 2D CA tra伍c flow models one has to mention that although 2D CA 
models less representative (in comparison with ID rule-184 CA) of real tra自c 丑OWぅ however 七hey may 

be applicable to 乱bs七ract tr乱缶cproblems such as data packets in computer networksぅref.25. Besides, 2D 
CA models may be useful from the viewpoint of complex behavior in deterministic dynamics, ref.26・27.
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