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Hisao Hayakawa
Gradnate School of Human and Environmental Studies. Kyoto University, Kyoto 606-01.Japan

Recently granular materials have been studied ex-
tensively. Unlike usual solids, liquids or gases. grann-
lar materials are known to show fascinating dynami-
cal behaviors [1], such as convection [2]. size segrega-
tion [3], bubbling [4]. standing waves and lccalized
excitations [5,6] under vertical vibration and a flu-
idized bed due to air injected inside a box containing
granules [7,8].

Dynamical behaviors of grains flowing through a
vertical pipe which can be regarded as a one dimen-
sional realization of a fluidized bed is also a typi-
cal example of unusual features of granular motion
[11-15]. Emergence of density waves (slugging) has
been investigated by molecular dynamics [9], Stoke-
sian dynamics simulation [10] and lattice-gas au-
tomata (LGA) simulations [11,12] and by the exper-
iments using sand or glass beads in air [13,14] and
metallic spheres in liquids [15]. In these days. we rec-
ognize that the emergence of density waves is closely
related to the formation of traffic jams in a highway
(16]. '

Theoretical analysis to understand jam formations
has been focused for pure one dimensional cases. Al-
though there are a variety of models such as optimal
velocity models [17- 19], time delayed models [20] and
fluid models [7,8.21,22] to describe such phenomena,
we believe that a universal mathematical structure
exists which is independent of the choice of mod-
els behind these phenomena. From the analysis for
pure one dimensional models we have recognized as
follows: (i) There is a neutral curve for the linear
stability of a uniform flow. (ii) Near the neutral
curve, all of models are reduced to the Kortweg de-
Veries (KdV) equation supplemented by dissipative
corrections [8,22 24]. (iii) To describe jam forma-
tions, KdV equation is inadequate because its solu-
tions are pulses. (iv) The jam formation is described
by an equation at a critical point on the neutral
curve where the quadratic term in KdV disappears
[18]. (v) We can obtain a steady propagating solu-
tion analytically which has asymmetric interfaces to
connect dense and dilute regions [18.19]. (vi) Due to
the dissipative corrections, the propagating velocity.
the width of interfaces and the amplitude have been
selected. (vii) The scaled analytic solution near the
critical point is very precise near the critical point
where its error is less than 1 % [19.25]. The quantita-
tive accuracy of the above statements can be checked
from Figs.1 and 2 [19]. Although these are interest-
ing recent progress, we do not pursue the analysis
for pure one dimensional models. Readers can see
summary of these progresses in Ref. [19.26].
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FIG. 1. Theorctical coexistence eurve (solid line)

o = afl = (h — h.)?/A?) where A = 1.13663,
he = 1.65343 and a, = 1.63866. and thc neu-
tral curve (broken line) for the model described
by e¢q.(2) with W(h) = tanh(h — 2) + tanh(2),

V(h) =14 (1 = tanh(h — 2))/(1 + tanh(2)) and fn = 0.
h denotes the average distance hetween successive cars.
The data is obtained for minimnm and maximum values
of 7, at a given a.[19]

In realistic situations, however. e.g. highways have
multi-lanes. and vehicles (particles) can pass slow
vehicles (particles). When we include multi-lane ef-
fects in one dimensional models. separations between
jam and non-jam phases become obscured. How-
ever. there is another universal law in quasi one-
dimensional systems for dissipative discrete element
flows, i.e. a power law in power spectrum of density
auto-correlation function of vehicles or particles.

Power-law form of the power spectrum P(f) ~
f~*. where f is frequency. of density fluctuations
was also found in both numerical simulations [11] and
experiments [13.14]. Although their interpretations -
on the origin of the emergence of density waves are
different. estimated values of the exponent a is close
to each other (1.3 < @ < 1.5). ’

Although the previous experiment [13.14] reported
a = 1.5, some of their experimental procedures seem
a little ambiguous: The volume of air flow out of
the bottom end of the pipe was not well controlled.
Besides. the power spectra they obtained were still
noisy. Recently. Moriyama et al. [27] have presented
better-controlled air flow out of the pipe and more
accurate experimental results than the previous ones
by increasing the number of trials [13.14]. One of
their results is the precise estimation of the scaling
exponent of the power spectrum P(f) ~ f=* . The
result is @ = 1.33. This result is identical to that by
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LGA [11]. and is expected to be a universal law in
quasi one dimensional dissipative flows such as traffic
flows in a highway.

The purpose of this paper is to clarify the mech-
anism to appear f~*/% law in power spectra. We,
thus. extend the one-dimensional model which can
be solved without the noise to a stochastic model
supplemented by the white noise. We will demon-
strate the simple model reproduces @ = 4/3 near
the neutral curve of the linear stability analysis of
uniform states.
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FIG. 2. Theoretical cnrve (solid line) and scaled data
obtained from our simulation for scaled r,. Each data de-
notes (e, N) = (1/2,32),(1/4,64),(1/8,128).(1/16.,256).
where € = (1 — a/ac)l/z. 'N.s' represents the data
for N cars (particles). Theorctical enrve is given by
R(z) = tanh(é04(z — z4.)) — 1 + tanh(£6_(z — z_)) with
&= (677)/2/16. 7" = 0.574189 . 6, = 1.2897187 and
f_ = —0.3876814, where only z4 = 62.5 and z- = 190.5
are fitting parameters. Spatial scale is measured by the
scale for N = 256.[19]

Let us introduce a one-dimensional model which
reproduces &« = 4/3. The important mechanisms
for particle dynamics are the drag between the air
and particles, and the relaxation process to an op-
timal velocity which may be the sedimentation rate
of particles. When the IV particles are confined in a
quasi-one dimensional container, the motion of par-
ticles may be described by the following nonlinear
equation:

Fr+ C[Fn = W({ra )] = TF({ra}) + fult). (1)

where 7, and ¢ are the relative distance between the
n-th and n + 1-th particles, and the friction con-
stant, respectively. The collisional force F({r,}) =
O (Tns1) + @' (Th-1) — 2¢'(r,,) comes from a soft core
repulsive potential ¢(r,). The parameter T repre-
sents the strength of repulsion. The optimal velocity

W({rn}) = U(™s5Ee) - U(2232=1) s the linear
combination of sedimentation rate U(r) which is the
nonlinear function of the local volume fraction [28] in
general. The most crucial simplification of (1) is to

assume that f,, is a Gaussian white noise with zero
mean. It should be noticed that the drag ( is irrel-
evant in systems where the bottom end of the pipe
is fully open. because air in the pipe flows away to-
gether with particles. Thus. to observe density waves
it is important to close the cock of the pipe.

We should indicate similarity between our model
and a model for traffic flows [19]

Ty = “[W(7'71+1)V(T11) - W("‘n)V(Tn—l) - 7:'1:,] + fu-

(2)

where W(z) and V(z) are respectively monotonic
increase and decreasing function of x.

Linearizing (1) around the uniform solution 7, = 0
where h =7, = N™! Y r,. we obtain

P + C[Fr — iU Fi sin k] = 2T¢" (cos k — 1)7s, + fu(t).
(3)

where the argument of U’ and ¢" is k. 71, and fi.(¢)
are respectively the Fourier transform of 47, = r,—a
and f.(t). Equation (3) has the solution 7i(t)
exp[o+t] . where

or = —g + \/(g>- = 2T¢"(1 - cos k) +i(U’'sin k.

(4)

Re[o 4] represents the relevant eigenvalue of the lin-
ear problem. which becomes positive for
U'(h)? cos?(k/2) > Te"(h).. Thus the most unsta-
ble wave number is & — 0 and the neutral curve is
given by T. = U?/p"(h). At T = T.(1 - p) the
expansion of o4 around Ak = 0 is given by

Cortye ey
k* — i E* 4---. (5)
where ¢y = U’(h). Thus. for sz > 0 the uniform state
is unstable due to the negative diffusion.
Adopting U(r) = tanh(r — 2) + tanh(2). o(r) =
sech’(r) . ¢ = 2. N = 256. T, = 3.95798--, and
= 2 at t = 0. we simnlate (1) by the classical
Runge-Kutta method until £ = 21! with time interval
At = 1/2* under the periodic boundary condition.
We use the uniform random number distributed be-
tween —X and X with X = 9/1024 for f,(t). Figure
3 displays the power spectrum P(f) = |&(f)|? ob-
tained from our simulation of (1) at 2 = 1/64, where
&(f) is the Fourier transform of the di%cxefely sam-

pled data of the density c(¢ =N Z

op(k) ~ [rnk——L 1+

with the

interval 1. This clearly supports P(f) f 4/3 a5 in
our experiment. It should be noticed that the simula-
tion of (2) also reproduces P(f) ~ f~*/3 law. From
the examinations of several values of .. we have con-
firmed that the qualitative results are insensitive to
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the sign of ;o when |p] <« 1. This result is reason-
able because near the neutral curve the time scale of
relaxation or growth of fluctnations is much longer
than the time scale induced by the noise f,(t). Our
result suggests that the linear relaxation theory of
fluctuations can be used to explain P(f) ~ f~*/3,
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FIG. 3. Log-log plot of power spectruum P(f) obtained
from the simulation of (1). where the unit of f is 1/(27).
The solid line represents f /3.

Thus. let us briefly explain how to appear f~*/°
law from the behavior of structure factor

= 57 < explik(dra(t) — bru(0))] > (6)

TLITL

in weakly stable states, i.e.. g < 0 and || < 1. The
structure factor can be rewritten as

.2
Sk(t) = %Zexp [“%‘¢1u1n(ﬂ] ) (7)

n,m

where ¢nom(t) =< (67,(t) — 67,,(0))% >. For o < 0.
Si(t) can be calculated as in the case of polymer
dynamics [29]. With the aid of the expansion of o,
(1) is reduced to

Orr(z.7) = O3r(2.7) = €[0% - B}r(2,T) + £(2. 7).
(8)

where 7 = €3p3t, z = ;—Ce($+c.,t . f(z.T) =e3f.(t)
Co

\/‘_ .
with ¢ = ——— /= and 3 = The solution
Jé \/_
of (8) is given by (T f dsexp[Ae(T — 5) ]5;
where A, = k% — ek?( 1 + Lé Thus, we obtain tl e
correlation

< 7:1\,(7')7:_;.;(0) >= EXI)[/\L,T]. (9)

D
2elk2(1 + k2)

where [ is the system size. and we use <

EI-:(T)gp(TI) >= ”?"SLH—'[I.O’S(T - T/)-

The procedure to obtain the structure factor is
parallel to that for polymer dynamics [29]. Substi-
tuting (9) into ¢(z.2'.t) =< (r(z.t) = 7(2'.£))? >
which is the continuous limit of the scaled ¢,,,,. we
obtain

1

D
2ty =2 t4+ — ——————
b(z. 2 )A D¢ +2df‘;“l.:2(1+k2)

« {leikz — ek 2 4 o1 - ez\nz)eik(z—-z')} (10)

1 12
With the aid of i()].z—l_-;-—-kz_) jad '?: - ! and
cos(k(z — 2')) 2
E m >~ 3 - llZ - ZII. the first term

nF
of (10) is reduced to

ikz zkz 12

it =
Z k21+A2

n#0

~ 2z - 2| (11)

On the other hand. the second term of (10) becomes

ik(z=2") coe[L z—2')
_ )y =2
i (1~ Z 21+ E2)

sm z—z)] .3
X {1 —(’OS ]\ f }+212 msm(k f) (12)

-—; to the integral
f”x' dk. and substituting (10)-(12) into (7). we ob-~
tain

. . x
Replacing the summation Y,

K2 k2
D w — —D————Tl/sh(u)],
2¢ TE

1
Si(T) :/ dz exp[—Dgh*T —
-1
(13)

where w = |z — 2’|. w = 277/3, and the argument of
Sy, is replaced by the scaled time. Dg is the diffusion
coustaut for the gravitational center in (8). and h(u)

is

cos(Qw) A3
() /: Q[ Pt ,,/SQZ)(I—-CO:s(Q )

sin(Qu) sin(Q?)
ml (14)

where Q3 = k37, and w = |z — 2'|. Since h(u) con-
verges to h(0) = 7/T'(1/3) as time goes on, we obtain

Si(r) =~ /3] (15)

€ :
— exp[—
iz <Pl T(1/3)
in intermediate time range. In the limit of small 7.

Di?
: —— k3
Sp(t) x 1 — 1/3 + -

transform. W]ll(‘h is nothing but the power spectrum
Pu(f) = |&(f)I? obeys

--. Thus its Fourier
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P(f)~f"" a=4/3 (as f— ). (16)

where use was made of [*° dre™f7|7|1/3 x f=4/3,
The value 4/3 is identical to the one obtained by the
experiment [27] and numerical simulations [11.27].
Thus our model (1) reproduces o = 4/3. This result
should be valid even when we start from fluid models
[8.21] since the result is determined by the universal
feature near the neutral curve. It should be noted
that the appearance of this power-law form in the
original model (1) is only for f < ( since we eliminate
the fast decaying mode o_ in our analysis. This ten-
dency is also observed as the higher-frequency cutoff
in the experiment [27].

Thus, f~*/3 law is determined by short time be-
havior of the dynamics of density waves induced by
the noise, which is essentially determined by the lin-
ear dispersion relation Ay, ~ ik3.

In this paper we have confirmed the universal law
of @ = 4/3 as the power-law exponent in the fre-
quency spectrum of density correlation function from
the simulation and the theory. We have also clari-
fied the mechanism to emerge f~*/3 spectrum which
is related to the critical slowing down of the density
fluctuations. It should be noticed that the contin-
uous increase of  in LGA [12] from a = 0 to 2
with the particle density is consistent with 4/3 law
and our picture. because the spectrum determined
by the noise in linearly stable uniform state far from
the neutral curve should be white (@ = 0) and the
effective exponent of the power-law becomes large
when the exponential decay (i.e. @ = 2) in the off-
critical region exists. There is, however. discrepancy
between our results with the one on the experiment
in liquids [15]. The reason of this difference should
be clarified in the future. .
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